login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A167669
Number of reduced words of length n in Coxeter group on 13 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.
1
1, 13, 156, 1872, 22464, 269568, 3234816, 38817792, 465813504, 5589762048, 67077144576, 804925734912, 9659108818944, 115909305827328, 1390911669927936, 16690940039135154, 200291280469620912
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170732, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, -66).
FORMULA
G.f.: (t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(66*t^15 - 11*t^14 - 11*t^13 - 11*t^12 - 11*t^11 - 11*t^10 - 11*t^9 - 11*t^8 - 11*t^7 - 11*t^6 - 11*t^5 - 11*t^4 - 11*t^3 - 11*t^2 - 11*t + 1).
MATHEMATICA
CoefficientList[Series[(t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(66*t^15 - 11*t^14 - 11*t^13 - 11*t^12 - 11*t^11 - 11*t^10 - 11*t^9 - 11*t^8 - 11*t^7 - 11*t^6 - 11*t^5 - 11*t^4 - 11*t^3 - 11*t^2 - 11*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 19 2016 *)
CROSSREFS
Sequence in context: A166558 A166954 A167114 * A167919 A168690 A168738
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved