login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167667
Expansion of (1-x+4*x^2)/(1-2*x)^2.
12
1, 3, 12, 36, 96, 240, 576, 1344, 3072, 6912, 15360, 33792, 73728, 159744, 344064, 737280, 1572864, 3342336, 7077888, 14942208, 31457280, 66060288, 138412032, 289406976, 603979776, 1258291200, 2617245696, 5435817984, 11274289152, 23353884672, 48318382080
OFFSET
0,2
COMMENTS
Also the number of maximal and maximum cliques in the n-cube-connected cycles graph for n > 3. - Eric W. Weisstein, Dec 01 2017
LINKS
Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018
Eric Weisstein's World of Mathematics, Cube-Connected Cycle Graph
Eric Weisstein's World of Mathematics, Maximal Clique
Eric Weisstein's World of Mathematics, Maximum Clique
FORMULA
a(0)=1, a(n) = 3*n*2^(n-1) for n>0.
a(0)=1, a(1)=3, a(2)=12, a(n) = 4*a(n-1)-4*a(n-2) for n>2.
a(n) = Sum_{k=0..n} A167666(n,k) * 2^k.
G.f.: 1 + 3*x*G(0)/2, where G(k)= 1 + 1/(1 - x/(x + (k+1)/(2*k+4)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
a(0)=1, a(n) = Sum_{i=0..n} binomial(n,i) * (2n-i). - Wesley Ivan Hurt, Mar 20 2015
MAPLE
A167667:=n->3*n*2^(n-1): (1, seq(A167667(n), n=1..30)); # Wesley Ivan Hurt, Mar 20 2015
MATHEMATICA
CoefficientList[Series[(1 - x + 4*x^2)/(1 - 2*x)^2, {x, 0, 30}], x] (* Wesley Ivan Hurt, Mar 20 2015 *)
Join[{1}, LinearRecurrence[{4, -4}, {3, 12}, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
Join[{1}, Table[3 2^(n - 1) n, {n, 20}]] (* Eric W. Weisstein, Dec 01 2017 *)
CoefficientList[Series[(1 - x + 4 x^2)/(-1 + 2 x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
PROG
(PARI) Vec((1-x+4*x^2)/(1-2*x)^2 + O(x^50)) \\ Michel Marcus, Mar 21 2015
(PARI) a(n) = if(n==0, 1, 3*n*2^(n-1)); \\ Altug Alkan, May 16 2018
(Magma) [1] cat [3*n*2^(n-1): n in [1..30]]; // Vincenzo Librandi, Mar 21 2015
CROSSREFS
Cf. A167666.
Sequence in context: A225259 A334891 A242526 * A292291 A215919 A027327
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Nov 08 2009
STATUS
approved