Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Sep 08 2022 08:45:48
%S 1,3,12,36,96,240,576,1344,3072,6912,15360,33792,73728,159744,344064,
%T 737280,1572864,3342336,7077888,14942208,31457280,66060288,138412032,
%U 289406976,603979776,1258291200,2617245696,5435817984,11274289152,23353884672,48318382080
%N Expansion of (1-x+4*x^2)/(1-2*x)^2.
%C Also the number of maximal and maximum cliques in the n-cube-connected cycles graph for n > 3. - _Eric W. Weisstein_, Dec 01 2017
%H Vincenzo Librandi, <a href="/A167667/b167667.txt">Table of n, a(n) for n = 0..3000</a>
%H Milan Janjić, <a href="https://arxiv.org/abs/1905.04465">On Restricted Ternary Words and Insets</a>, arXiv:1905.04465 [math.CO], 2019.
%H Franck Ramaharo, <a href="https://arxiv.org/abs/1802.07701">Statistics on some classes of knot shadows</a>, arXiv:1802.07701 [math.CO], 2018
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Cube-ConnectedCycleGraph.html">Cube-Connected Cycle Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MaximalClique.html">Maximal Clique</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MaximumClique.html">Maximum Clique</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4, -4).
%F a(0)=1, a(n) = 3*n*2^(n-1) for n>0.
%F a(0)=1, a(1)=3, a(2)=12, a(n) = 4*a(n-1)-4*a(n-2) for n>2.
%F a(n) = Sum_{k=0..n} A167666(n,k) * 2^k.
%F G.f.: 1 + 3*x*G(0)/2, where G(k)= 1 + 1/(1 - x/(x + (k+1)/(2*k+4)/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Jun 01 2013
%F a(0)=1, a(n) = Sum_{i=0..n} binomial(n,i) * (2n-i). - _Wesley Ivan Hurt_, Mar 20 2015
%p A167667:=n->3*n*2^(n-1): (1,seq(A167667(n), n=1..30)); # _Wesley Ivan Hurt_, Mar 20 2015
%t CoefficientList[Series[(1 - x + 4*x^2)/(1 - 2*x)^2, {x, 0, 30}], x] (* _Wesley Ivan Hurt_, Mar 20 2015 *)
%t Join[{1}, LinearRecurrence[{4, -4}, {3, 12}, 20]] (* _Eric W. Weisstein_, Dec 01 2017 *)
%t Join[{1}, Table[3 2^(n - 1) n, {n, 20}]] (* _Eric W. Weisstein_, Dec 01 2017 *)
%t CoefficientList[Series[(1 - x + 4 x^2)/(-1 + 2 x)^2, {x, 0, 20}], x] (* _Eric W. Weisstein_, Dec 01 2017 *)
%o (PARI) Vec((1-x+4*x^2)/(1-2*x)^2 + O(x^50)) \\ _Michel Marcus_, Mar 21 2015
%o (PARI) a(n) = if(n==0, 1, 3*n*2^(n-1)); \\ _Altug Alkan_, May 16 2018
%o (Magma) [1] cat [3*n*2^(n-1): n in [1..30]]; // _Vincenzo Librandi_, Mar 21 2015
%Y Cf. A167666.
%K nonn,easy
%O 0,2
%A _Philippe Deléham_, Nov 08 2009