login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364310
Number T(n,k) of partitions of n into k parts where each block of part i with multiplicity j is marked with a word of length i*j over an n-ary alphabet whose letters appear in alphabetical order and all n letters occur exactly once in the partition; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
4
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 5, 6, 1, 0, 1, 15, 15, 10, 1, 0, 1, 22, 76, 35, 15, 1, 0, 1, 63, 168, 252, 70, 21, 1, 0, 1, 93, 574, 785, 658, 126, 28, 1, 0, 1, 255, 2188, 3066, 2739, 1470, 210, 36, 1, 0, 1, 386, 5490, 18235, 12181, 7857, 2940, 330, 45, 1
OFFSET
0,9
LINKS
EXAMPLE
T(4,1) = 1: 4abcd.
T(4,2) = 5: 3abc1d, 3abd1c, 3acd1b, 3bcd1a, 22abcd.
T(4,3) = 6: 2ab11cd, 2ac11bd, 2ad11bc, 2bc11ad, 2bd11ac, 2cd11ab.
T(4,4) = 1: 1111abcd.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 3, 1;
0, 1, 5, 6, 1;
0, 1, 15, 15, 10, 1;
0, 1, 22, 76, 35, 15, 1;
0, 1, 63, 168, 252, 70, 21, 1;
0, 1, 93, 574, 785, 658, 126, 28, 1;
0, 1, 255, 2188, 3066, 2739, 1470, 210, 36, 1;
...
MAPLE
b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1)*x^j*binomial(n, i*j), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
seq(T(n), n=0..12);
MATHEMATICA
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0,
Sum[b[n - i*j, i - 1]*x^j*Binomial[n, i*j], {j, 0, n/i}]]]];
T[n_] := CoefficientList[b[n, n], x];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 18 2023, after Alois P. Heinz *)
CROSSREFS
Columns k=0-1 give: A000007, A057427.
Row sums give A178682.
T(n,n) gives A000012.
T(n+1,n) gives A000217.
T(n+2,n) gives A000332(n+3).
Cf. A364285.
Sequence in context: A327618 A121314 A119271 * A323222 A125104 A098157
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 18 2023
STATUS
approved