login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364308
Numbers k such that k, k+1 and k+2 have exactly 3 distinct prime factors.
5
644, 740, 804, 986, 1034, 1064, 1104, 1220, 1274, 1308, 1309, 1462, 1494, 1580, 1748, 1884, 1885, 1924, 1988, 2013, 2014, 2108, 2134, 2254, 2288, 2294, 2330, 2354, 2364, 2408, 2464, 2484, 2540, 2583, 2584, 2664, 2665, 2666, 2678, 2684, 2714, 2715, 2716, 2754, 2793
OFFSET
1,1
LINKS
FORMULA
a(1) = A080569(3).
{k: A001221(k) = A001221(k+1) = A001221(k+2) = 3}.
EXAMPLE
644 = 2^2*7*23 has 3 distinct prime factors, 645 = 3*5*43 has 3 distinct prime factors, and 646 = 2*17*19 has 3 distinct prime factors, so 644 is in the sequence.
MATHEMATICA
q[n_] := q[n] = PrimeNu[n] == 3; Select[Range[3000], q[#] && q[#+1] && q[#+2] &] (* Amiram Eldar, Oct 01 2024 *)
CROSSREFS
Subsequence of A006073 and of A140077.
Cf. A364307 (2 factors), A364309 (4 factors), A364266 (5 factors), A364265 (6 factors), A001221, A080569.
Sequence in context: A061324 A089295 A195808 * A260838 A304607 A168626
KEYWORD
nonn
AUTHOR
R. J. Mathar, Jul 18 2023
STATUS
approved