login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293926
Triangle read by rows, T(n, k) = Pochhammer(n, k) * Stirling2(2*n, k + n) for n >= 0 and 0 <= k <= n.
2
1, 1, 1, 7, 12, 6, 90, 195, 180, 60, 1701, 4200, 5320, 3360, 840, 42525, 114135, 176400, 157500, 75600, 15120, 1323652, 3764376, 6679134, 7484400, 5155920, 1995840, 332640, 49329280, 146386240, 287567280, 379387008, 332972640, 186666480, 60540480, 8648640
OFFSET
0,4
FORMULA
T(n, k) = A293617(n, n, k).
EXAMPLE
Triangle starts:
[0] 1
[1] 1, 1
[2] 7, 12, 6
[3] 90, 195, 180, 60
[4] 1701, 4200, 5320, 3360, 840
[5] 42525, 114135, 176400, 157500, 75600, 15120
[6] 1323652, 3764376, 6679134, 7484400, 5155920, 1995840, 332640
MAPLE
A293926 := (n, k) -> A293617(n, n, k ):
seq(seq(A293926(n, k), k=0..n), n=0..7);
MATHEMATICA
A293617[m_, n_, k_] := Pochhammer[m, k] StirlingS2[n + m, k + m];
A293926Row[n_] := Table[A293617[n, n, k], {k, 0, n}];
Table[A293926Row[n], {n, 0, 7}] // Flatten
PROG
(PARI) for(n=0, 10, for(k=0, n, print1(if(n==0 && k==0, 1, ((n+k-1)!/(n-1)!)*stirling(2*n, n + k, 2)), ", "))) \\ G. C. Greubel, Nov 19 2017
CROSSREFS
T(n,0) = Stirling2(2*n,n) = A007820(n), T(n,n) = A000407(n).
Cf. A293617.
Sequence in context: A126710 A300729 A152199 * A038598 A180570 A074474
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Oct 22 2017
STATUS
approved