login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows, T(n, k) = Pochhammer(n, k) * Stirling2(2*n, k + n) for n >= 0 and 0 <= k <= n.
2

%I #11 Nov 19 2017 03:28:52

%S 1,1,1,7,12,6,90,195,180,60,1701,4200,5320,3360,840,42525,114135,

%T 176400,157500,75600,15120,1323652,3764376,6679134,7484400,5155920,

%U 1995840,332640,49329280,146386240,287567280,379387008,332972640,186666480,60540480,8648640

%N Triangle read by rows, T(n, k) = Pochhammer(n, k) * Stirling2(2*n, k + n) for n >= 0 and 0 <= k <= n.

%H G. C. Greubel, <a href="/A293926/b293926.txt">Table of n, a(n) for the first 50 rows, flattened</a>

%F T(n, k) = A293617(n, n, k).

%e Triangle starts:

%e [0] 1

%e [1] 1, 1

%e [2] 7, 12, 6

%e [3] 90, 195, 180, 60

%e [4] 1701, 4200, 5320, 3360, 840

%e [5] 42525, 114135, 176400, 157500, 75600, 15120

%e [6] 1323652, 3764376, 6679134, 7484400, 5155920, 1995840, 332640

%p A293926 := (n, k) -> A293617(n, n, k ):

%p seq(seq(A293926(n, k), k=0..n), n=0..7);

%t A293617[m_, n_, k_] := Pochhammer[m, k] StirlingS2[n + m, k + m];

%t A293926Row[n_] := Table[A293617[n, n, k], {k, 0, n}];

%t Table[A293926Row[n], {n, 0, 7}] // Flatten

%o (PARI) for(n=0,10, for(k=0,n, print1(if(n==0 && k==0, 1, ((n+k-1)!/(n-1)!)*stirling(2*n, n + k, 2)), ", "))) \\ _G. C. Greubel_, Nov 19 2017

%Y T(n,0) = Stirling2(2*n,n) = A007820(n), T(n,n) = A000407(n).

%Y Cf. A293617.

%K nonn,tabl

%O 0,4

%A _Peter Luschny_, Oct 22 2017