OFFSET
3,1
LINKS
Michel Marcus, Rows 3..100 of triangle, flattened
Jean-Paul Delahaye, 121, 404 et autres nombres palindromes (in French), Pour La Science, 480, October 2017.
Erich Friedman, Problem of the Month, June 1999. "Does there exist an integer which is a palindrome in any pair of bases n and k?"
EXAMPLE
Triangle begins:
6643,
5, 10,
31, 26, 46,
7, 28, 21, 67,
85, 8, 85, 24, 92,
9, 121, 63, 18, 154, 121,
...
MATHEMATICA
palQ[n_Integer, base_Integer] := Block[{}, Reverse[idn = IntegerDigits[n, base]] == idn]; Table[ t[n, k], {n, 3, 13}, {k, 2, n - 1}] // Flatten (* Robert G. Wilson v, Nov 17 2017 *)
PROG
(PARI) isok(j, n, k) = my(dn=digits(j, n), dk=digits(j, k)); (Vecrev(dn)==dn) && (Vecrev(dk)==dk);
T(n, k) = {j = max(n, k); while(! isok(j, n, k), j++); j; }
tabl(nn) = for (n=3, nn, for (k=2, n-1, print1(T(n, k), ", ")); print);
CROSSREFS
KEYWORD
AUTHOR
Michel Marcus, Nov 16 2017
STATUS
approved