login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A293925
Triangle read by rows T(n, k) is the least integer that is a palindrome in base n and k, with more than 1 digit in both bases, n >= 3 and 2 <= k < n.
1
6643, 5, 10, 31, 26, 46, 7, 28, 21, 67, 85, 8, 85, 24, 92, 9, 121, 63, 18, 154, 121, 127, 10, 10, 109, 80, 40, 154, 33, 121, 55, 88, 55, 121, 121, 191, 255, 244, 255, 12, 166, 24, 36, 60, 232, 65, 13, 65, 26, 104, 78, 65, 91, 181, 277, 313, 28, 42, 98, 14, 235, 154, 70, 222, 84, 326
OFFSET
3,1
LINKS
Jean-Paul Delahaye, 121, 404 et autres nombres palindromes (in French), Pour La Science, 480, October 2017.
Erich Friedman, Problem of the Month, June 1999. "Does there exist an integer which is a palindrome in any pair of bases n and k?"
EXAMPLE
Triangle begins:
6643,
5, 10,
31, 26, 46,
7, 28, 21, 67,
85, 8, 85, 24, 92,
9, 121, 63, 18, 154, 121,
...
MATHEMATICA
palQ[n_Integer, base_Integer] := Block[{}, Reverse[idn = IntegerDigits[n, base]] == idn]; Table[ t[n, k], {n, 3, 13}, {k, 2, n - 1}] // Flatten (* Robert G. Wilson v, Nov 17 2017 *)
PROG
(PARI) isok(j, n, k) = my(dn=digits(j, n), dk=digits(j, k)); (Vecrev(dn)==dn) && (Vecrev(dk)==dk);
T(n, k) = {j = max(n, k); while(! isok(j, n, k), j++); j; }
tabl(nn) = for (n=3, nn, for (k=2, n-1, print1(T(n, k), ", ")); print);
CROSSREFS
Cf. A048268 (right diagonal), A056749 (1st column).
Sequence in context: A345571 A345827 A196510 * A048268 A043634 A060792
KEYWORD
nonn,base,tabl
AUTHOR
Michel Marcus, Nov 16 2017
STATUS
approved