|
|
A293925
|
|
Triangle read by rows T(n, k) is the least integer that is a palindrome in base n and k, with more than 1 digit in both bases, n >= 3 and 2 <= k < n.
|
|
1
|
|
|
6643, 5, 10, 31, 26, 46, 7, 28, 21, 67, 85, 8, 85, 24, 92, 9, 121, 63, 18, 154, 121, 127, 10, 10, 109, 80, 40, 154, 33, 121, 55, 88, 55, 121, 121, 191, 255, 244, 255, 12, 166, 24, 36, 60, 232, 65, 13, 65, 26, 104, 78, 65, 91, 181, 277, 313, 28, 42, 98, 14, 235, 154, 70, 222, 84, 326
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
3,1
|
|
LINKS
|
Erich Friedman, Problem of the Month, June 1999. "Does there exist an integer which is a palindrome in any pair of bases n and k?"
|
|
EXAMPLE
|
Triangle begins:
6643,
5, 10,
31, 26, 46,
7, 28, 21, 67,
85, 8, 85, 24, 92,
9, 121, 63, 18, 154, 121,
...
|
|
MATHEMATICA
|
palQ[n_Integer, base_Integer] := Block[{}, Reverse[idn = IntegerDigits[n, base]] == idn]; Table[ t[n, k], {n, 3, 13}, {k, 2, n - 1}] // Flatten (* Robert G. Wilson v, Nov 17 2017 *)
|
|
PROG
|
(PARI) isok(j, n, k) = my(dn=digits(j, n), dk=digits(j, k)); (Vecrev(dn)==dn) && (Vecrev(dk)==dk);
T(n, k) = {j = max(n, k); while(! isok(j, n, k), j++); j; }
tabl(nn) = for (n=3, nn, for (k=2, n-1, print1(T(n, k), ", ")); print);
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|