login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196510
Smallest number greater than n that is palindromic in base 3 and base n.
1
6643, 4, 10, 26, 28, 8, 121, 10, 121, 244, 13, 28, 1210, 16, 68, 784, 1733, 20, 1604, 242, 23, 2096, 100, 26, 937, 28, 203, 3280, 1952, 160, 1249, 68, 280, 1366, 14483, 608, 11293, 40, 82, 5948, 7102, 484, 2069, 644, 1222, 4372, 784, 100, 6452, 52
OFFSET
2,1
MAPLE
ispal := proc(n, b)
dgs := convert(n, base, b) ;
for i from 1 to nops(dgs)/2 do
if op(i, dgs) <> op(-i, dgs) then
return false;
end if;
end do;
return true;
end proc:
A196510 := proc(n)
for k from n+1 do
if ispal(k, n) and ispal(k, 3) then
return k;
end if;
end do:
end proc:
seq(A196510(n), n=2..30) ; # R. J. Mathar, Oct 13 2011
MATHEMATICA
pal3n[n_]:=Module[{k=n+1}, While[IntegerDigits[k, 3]!=Reverse[ IntegerDigits[ k, 3]] || IntegerDigits[ k, n]!= Reverse[ IntegerDigits[k, n]], k++]; k]; Array[ pal3n, 60, 2] (* Harvey P. Dale, Jan 16 2022 *)
PROG
(Sage)
def A196510(n):
is_palindrome = lambda x, b=10: x.digits(b) == (x.digits(b))[::-1]
return next(k for k in IntegerRange(n+1, infinity) if is_palindrome(k, n) and is_palindrome(k, 3))
# D. S. McNeil, Oct 03 2011
CROSSREFS
Cf. A056749.
Sequence in context: A237792 A345571 A345827 * A293925 A048268 A043634
KEYWORD
nonn,base
AUTHOR
Kausthub Gudipati, Oct 03 2011
STATUS
approved