The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196510 Smallest number greater than n that is palindromic in base 3 and base n. 1
 6643, 4, 10, 26, 28, 8, 121, 10, 121, 244, 13, 28, 1210, 16, 68, 784, 1733, 20, 1604, 242, 23, 2096, 100, 26, 937, 28, 203, 3280, 1952, 160, 1249, 68, 280, 1366, 14483, 608, 11293, 40, 82, 5948, 7102, 484, 2069, 644, 1222, 4372, 784, 100, 6452, 52 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 LINKS Zak Seidov, Table of n, a(n) for n = 2..1000 Erich Friedman, Problem of the month June 1999 MAPLE ispal := proc(n, b) dgs := convert(n, base, b) ; for i from 1 to nops(dgs)/2 do if op(i, dgs) <> op(-i, dgs) then return false; end if; end do; return true; end proc: A196510 := proc(n) for k from n+1 do if ispal(k, n) and ispal(k, 3) then return k; end if; end do: end proc: seq(A196510(n), n=2..30) ; # R. J. Mathar, Oct 13 2011 MATHEMATICA pal3n[n_]:=Module[{k=n+1}, While[IntegerDigits[k, 3]!=Reverse[ IntegerDigits[ k, 3]] || IntegerDigits[ k, n]!= Reverse[ IntegerDigits[k, n]], k++]; k]; Array[ pal3n, 60, 2] (* Harvey P. Dale, Jan 16 2022 *) PROG (Sage) def A196510(n): is_palindrome = lambda x, b=10: x.digits(b) == (x.digits(b))[::-1] return next(k for k in IntegerRange(n+1, infinity) if is_palindrome(k, n) and is_palindrome(k, 3)) # D. S. McNeil, Oct 03 2011 CROSSREFS Cf. A056749. Sequence in context: A237792 A345571 A345827 * A293925 A048268 A043634 Adjacent sequences: A196507 A196508 A196509 * A196511 A196512 A196513 KEYWORD nonn,base AUTHOR Kausthub Gudipati, Oct 03 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 05:07 EDT 2024. Contains 375027 sequences. (Running on oeis4.)