|
|
A345571
|
|
Numbers that are the sum of seven fourth powers in five or more ways.
|
|
8
|
|
|
6642, 6707, 6772, 6882, 6947, 7922, 7987, 8227, 8962, 9267, 9507, 9747, 10116, 10291, 10722, 10787, 10867, 10932, 10962, 11331, 11411, 11571, 12676, 12851, 12916, 13187, 13252, 13891, 13956, 14131, 14211, 14707, 14772, 14802, 14917, 14932, 14947, 15012, 15092
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Sean A. Irvine, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
6707 is a term because 6707 = 1^4 + 1^4 + 1^4 + 2^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 = 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4.
|
|
PROG
|
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 5])
for x in range(len(rets)):
print(rets[x])
|
|
CROSSREFS
|
Cf. A345523, A345562, A345570, A345572, A345580, A345608, A345827.
Sequence in context: A251796 A237794 A237792 * A345827 A196510 A293925
Adjacent sequences: A345568 A345569 A345570 * A345572 A345573 A345574
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
David Consiglio, Jr., Jun 20 2021
|
|
STATUS
|
approved
|
|
|
|