|
|
A345608
|
|
Numbers that are the sum of seven fifth powers in five or more ways.
|
|
7
|
|
|
6768576, 6776120, 7883668, 8625376, 8740709, 10036201, 10604054, 12476826, 12618493, 13006575, 13060213, 13080706, 13174250, 13536416, 13550162, 13562501, 13662500, 14110656, 14583968, 15169276, 15247994, 16053313, 16060683, 16374218, 16573507, 16600001
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Sean A. Irvine, Table of n, a(n) for n = 1..4721
|
|
EXAMPLE
|
6776120 is a term because 6776120 = 2^5 + 4^5 + 7^5 + 12^5 + 17^5 + 18^5 + 20^5 = 3^5 + 6^5 + 6^5 + 12^5 + 14^5 + 18^5 + 21^5 = 4^5 + 6^5 + 8^5 + 11^5 + 13^5 + 16^5 + 22^5 = 4^5 + 7^5 + 7^5 + 7^5 + 16^5 + 19^5 + 20^5 = 5^5 + 6^5 + 6^5 + 8^5 + 16^5 + 19^5 + 20^5.
|
|
PROG
|
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 5])
for x in range(len(rets)):
print(rets[x])
|
|
CROSSREFS
|
Cf. A345571, A345607, A345609, A345613, A345719, A346282.
Sequence in context: A022237 A273753 A116173 * A346282 A088238 A079015
Adjacent sequences: A345605 A345606 A345607 * A345609 A345610 A345611
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
David Consiglio, Jr., Jun 20 2021
|
|
STATUS
|
approved
|
|
|
|