login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079015
Primes introducing consecutive prime 6-tuple of primes or 5-tuple corresponding consecutive p-difference pattern as follows: {d, 2*d, 4*d, 8*d, 16*d}.
3
6824897, 10132607, 12674657, 13699457, 14148047, 27353237, 43918997, 44152307, 50608007, 53944337, 60426257, 60825827, 61325057, 68721047, 68933717, 72069707, 78577817, 82108127, 82334297, 87020177, 88226777, 97013927, 102043757, 106053917, 114412937, 122271557
OFFSET
1,1
EXAMPLE
prime(45277466) = 884909087 is followed by {2, 4, 8, 16, 32, 10, 50, ...} difference pattern.
prime(9312431) = 166392559 initiates {4, 8, 16, 32, 64, 14, 30, ...} difference pattern of consecutive primes.
MATHEMATICA
d[x_] := Prime[x+1]-Prime[x]; k=0; Do[s=d[n]; If[Equal[d[n+1], 2*s]&&Equal[d[n+2], 4*s]&&Equal[d[n+3], 8*s] &&Equal[d[n+4], 16*s], k=k+1; Print[{n, Prime[n]}]], {n, 1, 100000000}]
(* or *)
prmsUpTo[k_] :=
First /@ Select[Partition[Prime@ Range[PrimePi[k]], 6, 1],
Differences @# == {2, 4, 8, 16, 32} &]; prmsUpTo[10^9] (* Mikk Heidemaa, Apr 26 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 22 2003
EXTENSIONS
More terms from Jinyuan Wang, Feb 10 2021
STATUS
approved