The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A293619 Initial member of 6 consecutive primes a, b, c, d, e, f such that both (f + a)/(d - c) and (e + b)/(d - c) are prime. 0
 41, 941, 2269, 2411, 5101, 7193, 7283, 12011, 13159, 18427, 19183, 19961, 25589, 27751, 28579, 31151, 35771, 37313, 41543, 47087, 47939, 50459, 52691, 57251, 58229, 58897, 64279, 64553, 65827, 67121, 67411, 67741, 70853, 78277, 81869, 86353, 88993, 90007, 91253 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS EXAMPLE 41 is a term because it is the smallest member of 6 consecutive primes {41, 43, 47, 53, 59, 61} = {a, b, c, d, e, f} and both (f + a)/(d - c) = 17 and (e + b)/(d - c) = 17 are prime. 941 is a term because it is the smallest member of 6 consecutive primes {941, 947, 953, 967, 971, 977} = {a, b, c, d, e, f} and both (f + a)/(d - c) = 137 and (e + b)/(d - c) = 137 are prime. 7193 is a term because it is the smallest member of 6 consecutive primes {7193, 7207, 7211, 7213, 7219, 7229} = {a, b, c, d, e, f} and both (f + a)/(d - c) = 7211 and (e + b)/(d - c) = 7213 are prime. MATHEMATICA Select[Partition[Prime@Range, 6, 1], Function[{a, b, c, d, e, f}, And[PrimeQ[(f + a)/(d - c)] && PrimeQ[(e + b)/(d - c)]]] @@ # &][[All, 1]] CROSSREFS Cf. A000040, A292618, A292715, A292743, A293395. Sequence in context: A282928 A114529 A300173 * A177418 A038397 A104349 Adjacent sequences:  A293616 A293617 A293618 * A293620 A293621 A293622 KEYWORD nonn AUTHOR K. D. Bajpai, Oct 13 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 8 15:40 EDT 2021. Contains 343666 sequences. (Running on oeis4.)