login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028244
a(n) = 4^(n-1) - 3*3^(n-1) + 3*2^(n-1) - 1 (essentially Stirling numbers of second kind).
19
0, 0, 0, 6, 60, 390, 2100, 10206, 46620, 204630, 874500, 3669006, 15195180, 62350470, 254135700, 1030793406, 4166023740, 16792841910, 67558001700, 271392695406, 1089054420300, 4366671742950, 17498055448500, 70086339807006
OFFSET
1,4
COMMENTS
For n>=4, a(n) is equal to the number of functions f: {1,2,...,n-1}->{1,2,3,4} such that Im(f) contains 3 fixed elements. - Aleksandar M. Janjic and Milan Janjic, Feb 27 2007
FORMULA
a(n) = 6*S(n, 4) = 6*A000453(n). - Emeric Deutsch, May 02 2004
G.f.: 6x^4/((1-x)(1-2x)(1-3x)(1-4x)). - R. J. Mathar, Oct 23 2008
E.g.f.: (exp(4*x) - 4*exp(3*x) + 6*exp(2*x) - 4*exp(x) + 1)/4, with a(0) = 0. - Wolfdieter Lang, May 03 2017
a(n) = 2*A032263(n). - Alois P. Heinz, Jan 24 2018
MATHEMATICA
Table[4^(n - 1) - 3*3^(n - 1) + 3*2^(n - 1) - 1, {n, 1, 30}] (* Stefan Steinerberger, Apr 13 2006 *)
Table[6*StirlingS2[n, 4], {n, 1, 30}] (* G. C. Greubel, Nov 19 2017 *)
PROG
(Magma) [4^(n-1) - 3*3^(n-1) + 3*2^(n-1) - 1: n in [1..30]]; // G. C. Greubel, Nov 19 2017
(PARI) for(n=1, 30, print1(6*stirling(n, 4, 2), ", ")) \\ G. C. Greubel, Nov 19 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Doug McKenzie (mckfam4(AT)aol.com)
STATUS
approved