login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156991
Triangle T(n,k) read by rows: T(n,k) = n! * binomial(n + k - 1, n).
2
1, 0, 1, 0, 2, 6, 0, 6, 24, 60, 0, 24, 120, 360, 840, 0, 120, 720, 2520, 6720, 15120, 0, 720, 5040, 20160, 60480, 151200, 332640, 0, 5040, 40320, 181440, 604800, 1663200, 3991680, 8648640, 0, 40320, 362880, 1814400, 6652800, 19958400, 51891840, 121080960, 259459200
OFFSET
0,5
COMMENTS
Apart from the left column of (essentially) zeros, the same as A105725. - R. J. Mathar, Mar 02 2009
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 98
FORMULA
T(n, k) = RisingFactorial(n, k). - Peter Luschny, Mar 22 2022
EXAMPLE
Triangle begins as:
1;
0, 1;
0, 2, 6;
0, 6, 24, 60;
0, 24, 120, 360, 840;
0, 120, 720, 2520, 6720, 15120;
0, 720, 5040, 20160, 60480, 151200, 332640;
0, 5040, 40320, 181440, 604800, 1663200, 3991680, 8648640;
0, 40320, 362880, 1814400, 6652800, 19958400, 51891840, 121080960, 259459200;
...
MATHEMATICA
Table[n!*Binomial[n+k-1, n], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(PARI) for(n=0, 10, for(k=0, n, print1(n!*binomial(n+k-1, n), ", "))) \\ G. C. Greubel, Nov 19 2017
(Sage) flatten([[factorial(n)*binomial(n+k-1, n) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 10 2021
(Sage)
for k in range(9):
print([rising_factorial(n, k) for n in range(k+1)])
# Peter Luschny, Mar 22 2022
CROSSREFS
A092956 (row sums for n > 0).
Cf. A105725.
Sequence in context: A350256 A345208 A241810 * A229586 A294789 A197035
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Feb 20 2009
STATUS
approved