OFFSET
0,5
COMMENTS
Apart from the left column of (essentially) zeros, the same as A105725. - R. J. Mathar, Mar 02 2009
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 98
LINKS
G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
FORMULA
T(n, k) = RisingFactorial(n, k). - Peter Luschny, Mar 22 2022
EXAMPLE
Triangle begins as:
1;
0, 1;
0, 2, 6;
0, 6, 24, 60;
0, 24, 120, 360, 840;
0, 120, 720, 2520, 6720, 15120;
0, 720, 5040, 20160, 60480, 151200, 332640;
0, 5040, 40320, 181440, 604800, 1663200, 3991680, 8648640;
0, 40320, 362880, 1814400, 6652800, 19958400, 51891840, 121080960, 259459200;
...
MATHEMATICA
Table[n!*Binomial[n+k-1, n], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(PARI) for(n=0, 10, for(k=0, n, print1(n!*binomial(n+k-1, n), ", "))) \\ G. C. Greubel, Nov 19 2017
(Sage) flatten([[factorial(n)*binomial(n+k-1, n) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 10 2021
(Sage)
for k in range(9):
print([rising_factorial(n, k) for n in range(k+1)])
# Peter Luschny, Mar 22 2022
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Feb 20 2009
STATUS
approved