login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) read by rows: T(n,k) = n! * binomial(n + k - 1, n).
2

%I #33 Mar 22 2022 09:52:23

%S 1,0,1,0,2,6,0,6,24,60,0,24,120,360,840,0,120,720,2520,6720,15120,0,

%T 720,5040,20160,60480,151200,332640,0,5040,40320,181440,604800,

%U 1663200,3991680,8648640,0,40320,362880,1814400,6652800,19958400,51891840,121080960,259459200

%N Triangle T(n,k) read by rows: T(n,k) = n! * binomial(n + k - 1, n).

%C Apart from the left column of (essentially) zeros, the same as A105725. - _R. J. Mathar_, Mar 02 2009

%D J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 98

%H G. C. Greubel, <a href="/A156991/b156991.txt">Table of n, a(n) for the first 50 rows, flattened</a>

%F T(n, k) = RisingFactorial(n, k). - _Peter Luschny_, Mar 22 2022

%e Triangle begins as:

%e 1;

%e 0, 1;

%e 0, 2, 6;

%e 0, 6, 24, 60;

%e 0, 24, 120, 360, 840;

%e 0, 120, 720, 2520, 6720, 15120;

%e 0, 720, 5040, 20160, 60480, 151200, 332640;

%e 0, 5040, 40320, 181440, 604800, 1663200, 3991680, 8648640;

%e 0, 40320, 362880, 1814400, 6652800, 19958400, 51891840, 121080960, 259459200;

%e ...

%t Table[n!*Binomial[n+k-1, n], {n, 0, 12}, {k, 0, n}]//Flatten

%o (PARI) for(n=0,10, for(k=0,n, print1(n!*binomial(n+k-1,n), ", "))) \\ _G. C. Greubel_, Nov 19 2017

%o (Sage) flatten([[factorial(n)*binomial(n+k-1, n) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, May 10 2021

%o (Sage)

%o for k in range(9):

%o print([rising_factorial(n, k) for n in range(k+1)])

%o # _Peter Luschny_, Mar 22 2022

%Y A092956 (row sums for n > 0).

%Y Cf. A105725.

%K nonn,tabl,easy

%O 0,5

%A _Roger L. Bagula_, Feb 20 2009