login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A241810 Number of balanced orbitals over n sectors. 3
1, 1, 0, 0, 2, 6, 0, 6, 8, 36, 0, 88, 58, 376, 0, 1096, 526, 4476, 0, 14200, 5448, 57284, 0, 190206, 61108, 764812, 0, 2615268, 723354, 10499504, 0, 36677626, 8908546, 147110276, 0, 522288944, 113093022 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

For the combinatorial definitions see A232500. An orbital is balanced if its integral is 0. The integral of an orbital w over n sectors is sum(1<=k<=n, sum(1<=i<=k, w(i))) where w(i) are the jumps of the orbital represented by -1, 0, 1.

LINKS

Table of n, a(n) for n=0..36.

FORMULA

a(2*n) = A204459(2, n).

a(2*n+1) = A242087(n).

a(4*n) = A063074(n) = A029895(2*n) = A067059(2*n, 2*n).

a(4*n+2) = 0 for all n (proved by H. Havermann).

MATHEMATICA

np[z_]:=Module[{i, j}, For[i=Length[z], i>1&&z[[i-1]]>=z[[i]], i--]; For[j=Length[z], z[[j]]<=z[[i-1]], j--]; Join[Take[z, i-2], {z[[j]]}, Reverse[Drop[ReplacePart[z, z[[i-1]], j], i-1]]]]; o=Table[1, {16}];

n=0; f=0; Print[1]; Print[1]; While[n<16, n++; f=1-f; If[OddQ[f*n], Print[0], p=Join[-Take[o, n], {f}, Take[o, n-f]]; c=0; Do[If[Accumulate[Accumulate[p]][[-1]]==0, c++]; p=np[p], {(2*n+1-f)!/(2*n!^2)}]; Print[2*c]]; n=n-f]

(* Hans Havermann, May 10 2014 *)

PROG

(Sage)

def A241810(n):

    if n == 0: return 1

    A = 0

    T = [0] if is_odd(n) else []

    for i in (1..n//2):

        T.append(-1); T.append(1)

    for p in Permutations(T):

        P = 0; S = 0

        for k in (0..n-1):

            P += p[k]; S += P

        if S == 0: A += 1

    return A

[A241810(n) for n in (0..32)]

CROSSREFS

Cf. A232500, A242087.

Sequence in context: A108431 A190144 A019967 * A156991 A229586 A197035

Adjacent sequences:  A241807 A241808 A241809 * A241811 A241812 A241813

KEYWORD

nonn,more

AUTHOR

Peter Luschny, Apr 29 2014

EXTENSIONS

More terms from Hans Havermann, May 10 2014

a(35), a(36) from Hans Havermann, May 23 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 28 14:30 EDT 2017. Contains 288838 sequences.