This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241810 Number of balanced orbitals over n sectors. 3
 1, 1, 0, 0, 2, 6, 0, 6, 8, 36, 0, 88, 58, 376, 0, 1096, 526, 4476, 0, 14200, 5448, 57284, 0, 190206, 61108, 764812, 0, 2615268, 723354, 10499504, 0, 36677626, 8908546, 147110276, 0, 522288944, 113093022 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS For the combinatorial definitions see A232500. An orbital is balanced if its integral is 0. The integral of an orbital w over n sectors is sum(1<=k<=n, sum(1<=i<=k, w(i))) where w(i) are the jumps of the orbital represented by -1, 0, 1. LINKS FORMULA a(2*n) = A204459(2, n). a(2*n+1) = A242087(n). a(4*n) = A063074(n) = A029895(2*n) = A067059(2*n, 2*n). a(4*n+2) = 0 for all n (proved by H. Havermann). MATHEMATICA np[z_]:=Module[{i, j}, For[i=Length[z], i>1&&z[[i-1]]>=z[[i]], i--]; For[j=Length[z], z[[j]]<=z[[i-1]], j--]; Join[Take[z, i-2], {z[[j]]}, Reverse[Drop[ReplacePart[z, z[[i-1]], j], i-1]]]]; o=Table[1, {16}]; n=0; f=0; Print[1]; Print[1]; While[n<16, n++; f=1-f; If[OddQ[f*n], Print[0], p=Join[-Take[o, n], {f}, Take[o, n-f]]; c=0; Do[If[Accumulate[Accumulate[p]][[-1]]==0, c++]; p=np[p], {(2*n+1-f)!/(2*n!^2)}]; Print[2*c]]; n=n-f] (* Hans Havermann, May 10 2014 *) PROG (Sage) def A241810(n):     if n == 0: return 1     A = 0     T = [0] if is_odd(n) else []     for i in (1..n//2):         T.append(-1); T.append(1)     for p in Permutations(T):         P = 0; S = 0         for k in (0..n-1):             P += p[k]; S += P         if S == 0: A += 1     return A [A241810(n) for n in (0..32)] CROSSREFS Cf. A232500, A242087. Sequence in context: A108431 A190144 A019967 * A156991 A229586 A294789 Adjacent sequences:  A241807 A241808 A241809 * A241811 A241812 A241813 KEYWORD nonn,more AUTHOR Peter Luschny, Apr 29 2014 EXTENSIONS More terms from Hans Havermann, May 10 2014 a(35), a(36) from Hans Havermann, May 23 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 14:12 EST 2019. Contains 319225 sequences. (Running on oeis4.)