login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241810
Number of balanced orbitals over n sectors.
3
1, 1, 0, 0, 2, 6, 0, 6, 8, 36, 0, 88, 58, 376, 0, 1096, 526, 4476, 0, 14200, 5448, 57284, 0, 190206, 61108, 764812, 0, 2615268, 723354, 10499504, 0, 36677626, 8908546, 147110276, 0, 522288944, 113093022
OFFSET
0,5
COMMENTS
For the combinatorial definitions see A232500. An orbital is balanced if its integral is 0. The integral of an orbital w over n sectors is sum(1<=k<=n, sum(1<=i<=k, w(i))) where w(i) are the jumps of the orbital represented by -1, 0, 1.
FORMULA
a(2*n) = A204459(2, n).
a(2*n+1) = A242087(n).
a(4*n) = A063074(n) = A029895(2*n) = A067059(2*n, 2*n).
a(4*n+2) = 0 for all n (proved by H. Havermann).
MATHEMATICA
np[z_]:=Module[{i, j}, For[i=Length[z], i>1&&z[[i-1]]>=z[[i]], i--]; For[j=Length[z], z[[j]]<=z[[i-1]], j--]; Join[Take[z, i-2], {z[[j]]}, Reverse[Drop[ReplacePart[z, z[[i-1]], j], i-1]]]]; o=Table[1, {16}];
n=0; f=0; Print[1]; Print[1]; While[n<16, n++; f=1-f; If[OddQ[f*n], Print[0], p=Join[-Take[o, n], {f}, Take[o, n-f]]; c=0; Do[If[Accumulate[Accumulate[p]][[-1]]==0, c++]; p=np[p], {(2*n+1-f)!/(2*n!^2)}]; Print[2*c]]; n=n-f]
(* Hans Havermann, May 10 2014 *)
PROG
(Sage)
def A241810(n):
if n == 0: return 1
A = 0
T = [0] if is_odd(n) else []
for i in (1..n//2):
T.append(-1); T.append(1)
for p in Permutations(T):
P = 0; S = 0
for k in (0..n-1):
P += p[k]; S += P
if S == 0: A += 1
return A
[A241810(n) for n in (0..32)]
CROSSREFS
Sequence in context: A327280 A350256 A345208 * A156991 A229586 A294789
KEYWORD
nonn,more
AUTHOR
Peter Luschny, Apr 29 2014
EXTENSIONS
More terms from Hans Havermann, May 10 2014
a(35), a(36) from Hans Havermann, May 23 2014
STATUS
approved