login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241811
a(1) = 1, a(2) = 0; for n >= 3, a(n) = least number not included earlier that divides the concatenation of all previous terms.
5
1, 0, 2, 3, 11, 71, 29, 9, 683, 67, 7, 743, 739, 1933, 23, 161, 21, 37, 19, 17, 119, 49, 332534262883, 13, 39, 13739483941387, 83, 111, 79853560395691, 5431567, 70610371, 69, 51, 4112497, 28384496881337963, 353, 77, 1531, 42787, 63, 27, 41, 709, 33, 81, 487, 139697
OFFSET
1,3
LINKS
EXAMPLE
a(1)=1 and a(2)=0. a(1) U a(2) = 10 and its divisors are 1, 2, 5, 10. Therefore 2 is the least number not yet present in the sequence which divides 10. Again, a(1) U a(2) U a(3) = 102 and its divisors are 1, 2, 3, 6, 17, 34, 51, 102. Therefore a(4)=3, etc.
MAPLE
with(numtheory):
T:=proc(t) local x, y; x:=t; y:=0; while x>0 do x:=trunc(x/10); y:=y+1; od; end:
P:=proc(q) local a, b, c, k, n; b:=10; print(1); print(0); c:=[0, 1];
for n from 1 to q do a:=sort([op(divisors(b))]); for k from 2 to nops(a) do
if not member(a[k], c) then c:=[op(c), a[k]]; b:=a[k]+b*10^T(a[k]); print(a[k]); break;
fi; od; od; end: P(30);
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Apr 29 2014
EXTENSIONS
a(23)-a(28) from Zak Seidov, May 08 2014
a(29)-a(47) from Giovanni Resta, Aug 15 2019
STATUS
approved