login
A096097
a(1) = 2, a(2) = 1; for n >= 3, a(n) = least prime not included earlier that divides the concatenation of all previous terms.
4
2, 1, 3, 71, 7, 10177, 2100001, 101770000001, 4603, 13, 107, 4013, 23, 3097349301044927552199565217412468305904367, 1847, 37, 367767021959, 54371, 3229, 17, 520063, 29, 389, 8059, 732713, 11, 7123120001, 137, 294563, 1656881076199062425029, 313583, 4817, 277
OFFSET
1,1
COMMENTS
Conjecture:(1) Every concatenation is squarefree. (2) This is a rearrangement of the noncomposite numbers other than 5.
Conjecture (1) is false. 3^2 divides the concatenation for a(22) and a(30). - Sean A. Irvine, Nov 25 2009
EXAMPLE
a(4) = 71 as 213 = 3*71.
CROSSREFS
Cf. A096098.
Sequence in context: A106485 A126008 A096098 * A212805 A246431 A225777
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Jun 24 2004
EXTENSIONS
More terms from Sean A. Irvine, Nov 25 2009
a(30)-a(33) from Chai Wah Wu, Nov 29 2019
STATUS
approved