

A096099


a(0) = 1, a(n) = least number such that the concatenation of all terms through a(n) is divisible by prime(n).


1



1, 2, 3, 5, 5, 2, 13, 25, 8, 22, 16, 26, 35, 35, 11, 26, 48, 58, 6, 46, 4, 77, 83, 29, 33, 187, 61, 78, 81, 23, 183, 15, 22, 68, 8, 137, 84, 178, 99, 7, 71, 82, 142, 241, 133, 71, 56, 19, 32, 318, 157, 199, 303, 16, 201, 201, 213, 257, 355, 229, 365, 379, 345, 27, 52, 19, 272
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Related sequence: numbers k such that a(k) > prime(k): 7, 21, 22, 25, 30, 37, 43, 49, 52, 58, 60, 61, 62 ... (E.g., 7 would be a term since a(7) = 25 > prime(7) = 17.) [edited by Jon E. Schoenfield, Nov 19 2018]


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000


EXAMPLE

a(7) = 25 as the concatenation a(1),a(2),...,a(6),a(7) = 1235521325 == 0 (mod 17), prime(7) = 17.


MATHEMATICA

s = "1"; Print[s]; Do[k = 1; While[Mod[ToExpression[s <> ToString[k]], Prime[n]] != 0, k++ ]; Print[k]; s = s <> ToString[k], {n, 1, 100}] (* Ryan Propper, Sep 03 2005 *)


CROSSREFS

Cf. A073893.
Sequence in context: A264047 A264035 A082876 * A019780 A227833 A133293
Adjacent sequences: A096096 A096097 A096098 * A096100 A096101 A096102


KEYWORD

base,nonn


AUTHOR

Amarnath Murthy, Jun 24 2004


EXTENSIONS

a(10)a(66) from Ryan Propper, Sep 03 2005


STATUS

approved



