Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 May 23 2014 13:54:00
%S 1,1,0,0,2,6,0,6,8,36,0,88,58,376,0,1096,526,4476,0,14200,5448,57284,
%T 0,190206,61108,764812,0,2615268,723354,10499504,0,36677626,8908546,
%U 147110276,0,522288944,113093022
%N Number of balanced orbitals over n sectors.
%C For the combinatorial definitions see A232500. An orbital is balanced if its integral is 0. The integral of an orbital w over n sectors is sum(1<=k<=n, sum(1<=i<=k, w(i))) where w(i) are the jumps of the orbital represented by -1, 0, 1.
%F a(2*n) = A204459(2, n).
%F a(2*n+1) = A242087(n).
%F a(4*n) = A063074(n) = A029895(2*n) = A067059(2*n, 2*n).
%F a(4*n+2) = 0 for all n (proved by H. Havermann).
%t np[z_]:=Module[{i,j},For[i=Length[z],i>1&&z[[i-1]]>=z[[i]],i--];For[j=Length[z],z[[j]]<=z[[i-1]],j--];Join[Take[z,i-2],{z[[j]]},Reverse[Drop[ReplacePart[z,z[[i-1]],j],i-1]]]];o=Table[1,{16}];
%t n=0;f=0;Print[1];Print[1];While[n<16,n++;f=1-f;If[OddQ[f*n],Print[0],p=Join[-Take[o,n],{f},Take[o,n-f]];c=0;Do[If[Accumulate[Accumulate[p]][[-1]]==0,c++];p=np[p],{(2*n+1-f)!/(2*n!^2)}];Print[2*c]];n=n-f]
%t (* _Hans Havermann_, May 10 2014 *)
%o (Sage)
%o def A241810(n):
%o if n == 0: return 1
%o A = 0
%o T = [0] if is_odd(n) else []
%o for i in (1..n//2):
%o T.append(-1); T.append(1)
%o for p in Permutations(T):
%o P = 0; S = 0
%o for k in (0..n-1):
%o P += p[k]; S += P
%o if S == 0: A += 1
%o return A
%o [A241810(n) for n in (0..32)]
%Y Cf. A232500, A242087.
%K nonn,more
%O 0,5
%A _Peter Luschny_, Apr 29 2014
%E More terms from _Hans Havermann_, May 10 2014
%E a(35), a(36) from _Hans Havermann_, May 23 2014