login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228909
a(n) = 7^n - 6*6^n + 15*5^n - 20*4^n + 15*3^n - 6*2^n + 1.
7
0, 0, 0, 0, 0, 0, 720, 20160, 332640, 4233600, 46070640, 451725120, 4115105280, 35517081600, 294293759760, 2362955474880, 18509835445920, 142172988048000, 1074905737084080, 8023358912869440, 59263889194762560, 433988913576556800, 3155502239364459600, 22807773973299268800
OFFSET
0,7
COMMENTS
Essentially Stirling Numbers of the Second Kind, with an offset index, and multiplied by 720.
Calculates the seventh column of coefficients with respect to the derivatives, d^n/dx^n(y), of the logistic equation when written as y=1/[1+exp(-x)].
LINKS
Index entries for linear recurrences with constant coefficients, signature (28,-322,1960,-6769,13132,-13068,5040).
FORMULA
a(n) = 720 * S(n+1,7), n>=0.
G.f.: -720*x^6 / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)). - Colin Barker, Dec 16 2014
E.g.f.: Sum_{k=1..7} (-1)^(7-k)*binomial(7-1,k-1)*exp(k*x). - Wolfdieter Lang, May 03 2017
MATHEMATICA
Derivative[0][y][x] = y[x]; Derivative[1][y][x] = y[x]*(1 - y[x]); Derivative[n_][y][x] := Derivative[n][y][x] = D[Derivative[n - 1][y][x], x]; row[n_] := CoefficientList[ Derivative[n][y][x], y[x]] // Rest; Join[{0, 0, 0, 0, 0, 0}, Table[row[n], {n, 6, 23}] [[All, 7]]] (* Jean-François Alcover, Dec 16 2014 *)
Table[7^n - 6*6^n + 15*5^n - 20*4^n + 15*3^n - 6*2^n + 1, {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
Table[6!*StirlingS2[n + 1, 7], {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
PROG
(PARI) a(n)=7^(n)-6*6^(n)+15*5^(n)-20*4^(n)+15*3^(n)-6*2^(n)+1
(PARI) concat([0, 0, 0, 0, 0, 0], Vec(-720*x^6/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)) + O(x^100))) \\ Colin Barker, Dec 16 2014
(Magma) [7^n - 6*6^n + 15*5^n - 20*4^n + 15*3^n - 6*2^n + 1: n in [0..30]]; // G. C. Greubel, Nov 19 2017
CROSSREFS
Represents the seventh column of results of A163626.
Sequence in context: A052779 A254079 A037212 * A126781 A090008 A223857
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Offset corrected by Jean-François Alcover, Dec 16 2014
a(20) corrected by Jean-François Alcover, Dec 16 2014
Formula adapted for new offset by Vaclav Kotesovec, Dec 16 2014
STATUS
approved