login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228912
a(n) = 10^n - 9*9^n + 36*8^n - 84*7^n + 126*6^n - 126*5^n + 84*4^n - 36*3^n + 9*2^n - 1.
6
0, 0, 0, 0, 0, 0, 0, 0, 0, 362880, 19958400, 618710400, 14270256000, 273158645760, 4595022432000, 70309810771200, 1000944296352000, 13467262000832640, 173201547619900800, 2147373231974006400, 25832386565857872000, 303056981918271947520, 3481253462769108364800
OFFSET
0,10
COMMENTS
Calculates the tenth column of coefficients with respect to the derivatives, d^n/dx^n(y), of the logistic equation when written as y = 1/[1+exp(-x)].
LINKS
Index entries for linear recurrences with constant coefficients, signature (55,-1320,18150,-157773,902055,-3416930,8409500,-12753576,10628640,-3628800).
FORMULA
G.f.: 362880*x^9 / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)). - Colin Barker, Sep 20 2013
E.g.f.: Sum_{k=1..10} (-1)^(10-k)*binomial(10-1,k-1)*exp(k*x). - Wolfdieter Lang, May 03 2017
MATHEMATICA
Table[9!*StirlingS2[n+1, 10], {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
Table[10^n-9*9^n+36*8^n-84*7^n+126*6^n-126*5^n+84*4^n-36*3^n+9*2^n-1, {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
CoefficientList[Series[362880*x^9 / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 16 2014 after Colin Barker *)
PROG
(PARI) a(n)=10^n-9*9^n+36*8^n-84*7^n+126*6^n-126*5^n+84*4^n-36*3^n+9*2^n-1
CROSSREFS
Tenth column of results of A163626.
Essentially 362880*A049435.
Cf. A228910 (with more crossrefs), A228911.
Sequence in context: A179967 A133360 A254082 * A213871 A179064 A246197
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Offset corrected by Vaclav Kotesovec, Dec 16 2014
STATUS
approved