login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228913
a(n) = 11^n-10*10^n+45*9^n-120*8^n+210*7^n-252*6^n+210*5^n-120*4^n+45*3^n-10*2^n+1.
5
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3628800, 239500800, 8821612800, 239740300800, 5368729766400, 105006251750400, 1858166876966400, 30449278610150400, 469614684719980800, 6897777008118796800, 97349279409046828800, 1329165939158093836800, 17651395149921751680000
OFFSET
0,11
COMMENTS
Calculates the eleventh column of coefficients with respect to the derivatives, d^n/dx^n(y), of the logistic equation when written as y=1/[1+exp(-x)].
LINKS
Index entries for linear recurrences with constant coefficients, signature (66, -1925, 32670, -357423, 2637558, -13339535, 45995730, -105258076, 150917976, -120543840, 39916800).
FORMULA
G.f.: -3628800*x^10 / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)*(11*x-1)). - Colin Barker, Sep 20 2013
E.g.f.: Sum_{k=1..11} (-1)^(11-k)*binomial(11-1,k-1)*exp(k*x). - Wolfdieter Lang, May 03 2017
MATHEMATICA
Table[10!*StirlingS2[n+1, 11], {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
CoefficientList[Series[-3628800*x^10 / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)*(11*x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 16 2014 *)
Table[11^n-10*10^n+45*9^n-120*8^n+210*7^n-252*6^n+210*5^n-120*4^n+45*3^n-10*2^n+1, {n, 0, 20}] (* Vaclav Kotesovec, Dec 16 2014 *)
LinearRecurrence[{66, -1925, 32670, -357423, 2637558, -13339535, 45995730, -105258076, 150917976, -120543840, 39916800}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3628800}, 30] (* Harvey P. Dale, Mar 20 2017 *)
PROG
(PARI) a(n)=11^n-10*10^n+45*9^n-120*8^n+210*7^n-252*6^n+210*5^n-120*4^n+45*3^n-10*2^n+1
CROSSREFS
Eleventh column of results of A163626.
Cf. A228910 (with more cf.s), A228911, A228912.
Sequence in context: A061603 A153761 A133132 * A179065 A213872 A227672
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Offset corrected by Vaclav Kotesovec, Dec 16 2014
STATUS
approved