login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 10^n - 9*9^n + 36*8^n - 84*7^n + 126*6^n - 126*5^n + 84*4^n - 36*3^n + 9*2^n - 1.
6

%I #38 Oct 11 2017 05:10:07

%S 0,0,0,0,0,0,0,0,0,362880,19958400,618710400,14270256000,273158645760,

%T 4595022432000,70309810771200,1000944296352000,13467262000832640,

%U 173201547619900800,2147373231974006400,25832386565857872000,303056981918271947520,3481253462769108364800

%N a(n) = 10^n - 9*9^n + 36*8^n - 84*7^n + 126*6^n - 126*5^n + 84*4^n - 36*3^n + 9*2^n - 1.

%C Calculates the tenth column of coefficients with respect to the derivatives, d^n/dx^n(y), of the logistic equation when written as y = 1/[1+exp(-x)].

%H Seiichi Manyama, <a href="/A228912/b228912.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (55,-1320,18150,-157773,902055,-3416930,8409500,-12753576,10628640,-3628800).

%F G.f.: 362880*x^9 / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)). - _Colin Barker_, Sep 20 2013

%F E.g.f.: Sum_{k=1..10} (-1)^(10-k)*binomial(10-1,k-1)*exp(k*x). - _Wolfdieter Lang_, May 03 2017

%t Table[9!*StirlingS2[n+1, 10], {n, 0, 20}] (* _Vaclav Kotesovec_, Dec 16 2014 *)

%t Table[10^n-9*9^n+36*8^n-84*7^n+126*6^n-126*5^n+84*4^n-36*3^n+9*2^n-1, {n, 0, 20}] (* _Vaclav Kotesovec_, Dec 16 2014 *)

%t CoefficientList[Series[362880*x^9 / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Dec 16 2014 after _Colin Barker_ *)

%o (PARI) a(n)=10^n-9*9^n+36*8^n-84*7^n+126*6^n-126*5^n+84*4^n-36*3^n+9*2^n-1

%Y Tenth column of results of A163626.

%Y Essentially 362880*A049435.

%Y Cf. A228910 (with more crossrefs), A228911.

%K nonn,easy

%O 0,10

%A _Richard V. Scholtz, III_, Sep 07 2013

%E Offset corrected by _Vaclav Kotesovec_, Dec 16 2014