|
|
A179064
|
|
Number of non-attacking placements of 9 rooks on an n X n board.
|
|
4
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 362880, 36288000, 1097712000, 17563392000, 185513328000, 1454424491520, 9090153072000, 47491411968000, 214453407168000, 857813628672000, 3096707199505920, 10237048593408000, 31350961317312000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,9
|
|
LINKS
|
Andrew Howroyd, Table of n, a(n) for n = 1..200
Christopher R. H. Hanusa, T Zaslavsky, S Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853, a12016
|
|
FORMULA
|
a(n) = 9!*binomial(n,9)^2.
G.f.: -362880*x^9*(x +1)*(x^8 +80*x^7 +1216*x^6 +5840*x^5 +10036*x^4 +5840*x^3 +1216*x^2 +80*x +1) / (x -1)^19. - Colin Barker, Jan 08 2013
|
|
PROG
|
(PARI) a(n) = 9! * binomial(n, 9)^2 \\ Andrew Howroyd, Feb 13 2018
|
|
CROSSREFS
|
Column k=9 of A144084.
Cf. A179063 (8 rooks), A179065 (10 rooks).
Sequence in context: A254082 A228912 A213871 * A246197 A246617 A246220
Adjacent sequences: A179061 A179062 A179063 * A179065 A179066 A179067
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Thomas Zaslavsky, Jun 28 2010
|
|
STATUS
|
approved
|
|
|
|