login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228908
Primes of the form T(n) + S(n) + C(n) + 1 where T(n), S(n) and C(n) are the n-th triangular, square and cube numbers.
2
43, 421, 613, 1951, 7411, 12973, 23143, 31249, 48619, 114073, 210631, 256033, 321403, 365509, 381061, 502441, 521641, 669901, 766039, 791431, 1015051, 1108693, 1242271, 1929751, 2121793, 2773471, 3759991, 3832999, 4057681, 5498329, 7133281, 7472011, 7587259
OFFSET
1,1
COMMENTS
Also primes of the form n^3 + 3/2*n^2 + 1/2*n + 1.
LINKS
EXAMPLE
a(3) = 613: T(8)+S(8)+C(8)+1 = 1/2*8*(8+1)+8^2+8^3+1 = 613 which is prime.
a(4) = 1951: T(12)+S(12)+C(12)+1 = 1/2*12*(12+1)+12^2+12^3+1 = 1951 which is prime.
MAPLE
KD:= proc() local a, b, c, d; a:= (1/2)*n*(n+1); b:=n^2; c:=n^3; d:=a+b+c+1; if isprime(d) then RETURN(d): fi; end:seq(KD(), n=1..500);
PROG
(PARI) select(isprime, vector(100, n, n^3+3/2*n^2+n/2+1)) \\ Charles R Greathouse IV, Sep 15 2013
CROSSREFS
Sequence in context: A142770 A142841 A142913 * A027002 A093673 A244769
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Sep 14 2013
STATUS
approved