login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A229080
Primes of the form T(k) + S(k) + 1 where T(k) is the k-th triangular number and S(k) is the k-th square number.
4
3, 41, 101, 127, 223, 443, 673, 877, 1277, 1553, 2543, 2927, 3061, 4241, 4733, 4903, 5431, 6971, 7177, 8933, 9883, 10627, 11927, 12743, 13873, 17551, 19211, 20593, 21661, 26203, 31177, 33377, 36583, 40427, 51431, 58313, 60101, 60703, 67523, 68161, 75377, 81551
OFFSET
1,1
COMMENTS
Also primes of the form (3k^2 + k + 2)/2.
LINKS
EXAMPLE
T(8) + S(8) + 1 = 8*(8+1)/2 + 8^2 + 1 = 101, which is prime, so 101 is a term.
T(9) + S(9) + 1 = 9*(9+1)/2 + 9^2 + 1 = 127, which is prime, so 127 is a term.
MAPLE
KD:= proc() local a, b, d; a:= (1/2)*x*(x+1); b:=x^2; d:=a+b+1; if isprime(d) then RETURN(d): fi; end: seq(KD(), x=1..500);
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Sep 12 2013
STATUS
approved