login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229083
Numbers k such that the distance between the k-th triangular number and the nearest square is at most 1.
2
1, 2, 4, 5, 8, 15, 25, 32, 49, 90, 148, 189, 288, 527, 865, 1104, 1681, 3074, 5044, 6437, 9800, 17919, 29401, 37520, 57121, 104442, 171364, 218685, 332928, 608735, 998785, 1274592, 1940449, 3547970, 5821348, 7428869, 11309768, 20679087, 33929305, 43298624, 65918161
OFFSET
1,2
COMMENTS
The k-th triangular number (A000217) is a square, or a square plus or minus one.
Union of A006451 (k-th triangular number is a square minus one), A072221 (k-th triangular number is a square plus one), and A001108 (k-th triangular number is square). Also, union of A229131 and A001108.
FORMULA
G.f.: (x^7 - 2*x^6 + x^5 - 3*x^4 + x^3 + 2*x^2 + x + 1)/((1-2*x^2+x^4)*(1-2*x^2-x^4)*(1-x)) (conjectured).
EXAMPLE
A000217(4) = 10 and 10 - 3^2 = 1 so 4 is in the sequence.
A000217(5) = 15 and 4^2 - 15 = 1 so 5 is in the sequence.
A000217(8) = 36 = 6^2 so 8 is in sequence.
PROG
(PARI) for(n=1, 10^8, for(i=-1, 1, f=0; if(issquare(n*(n+1)/2+i), f=1; break)); if(f, print1(n, ", ")))
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Stephan, Sep 13 2013
STATUS
approved