login
A229131
Numbers k such that the distance between the k-th triangular number and the nearest square is exactly 1.
5
1, 2, 4, 5, 15, 25, 32, 90, 148, 189, 527, 865, 1104, 3074, 5044, 6437, 17919, 29401, 37520, 104442, 171364, 218685, 608735, 998785, 1274592, 3547970, 5821348, 7428869, 20679087, 33929305, 43298624
OFFSET
1,2
COMMENTS
The k-th triangular number (A000217(k)) is a square plus or minus one.
Union of A006451 (k-th triangular number is a square minus one) and A072221 (k-th triangular number is a square plus one).
FORMULA
G.f.: (-x^7 + 2*x^6 - 2*x^5 + 4*x^4 - 5*x^3 + 2*x^2 + x + 1)/((1-6*x^3+x^6)*(1-x)) (conjectured).
EXAMPLE
A000217(4)=10 and 10 - 3^2 = 1 so 4 is in the sequence.
A000217(5)=15 and 4^2 - 15 = 1 so 5 is in the sequence.
PROG
(PARI) for(n=1, 10^8, for(i=-1, 1, f=0; if(i&&issquare(n*(n+1)/2+i), f=1; break)); if(f, print1(n, ", ")))
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Stephan, Sep 15 2013
STATUS
approved