login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229128
a(n) = (1/(n+1)) * Sum_{k=0..n} A185072(n-k)*A185072(k).
2
1, 1, -1, 2, -8, 10, -372, -6014, -194140, -6851310, -286013372, -13629729990, -731279661488, -43618952847894, -2863512195607780, -205184821861288518, -15936259396425487780, -1333664198543385424414, -119648378626870160202060, -11456079894214769377662158
OFFSET
0,4
COMMENTS
Does this sequence consist entirely of integers?
The g.f. G(x) of A185072 satisfies [x^(n+1)] G(x)^(n^2+1) = 0 for n>0.
LINKS
EXAMPLE
G.f.: A(x) = 1 + x - x^2 + 2*x^3 - 8*x^4 + 10*x^5 - 372*x^6 - 6014*x^7 +...
The g.f. of A185072 begins:
G(x) = 1 + x - 2*x^2 + 6*x^3 - 28*x^4 + 70*x^5 - 1446*x^6 - 22302*x^7 +...
G(x)^2 = 1 + 2*x - 3*x^2 + 8*x^3 - 40*x^4 + 60*x^5 - 2604*x^6 - 48112*x^7 +...
where the coefficient of x^n in G(x)^2 appears to be divisible by (n+1) for n>=0.
PROG
(PARI) {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=-Vec((1/x*serreverse(x/Ser(A)^(#A-1)))^(1/(#A-1)))[#A]); Vec(Ser(A)^2)[n+1]/(n+1)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A185072.
Sequence in context: A171976 A362278 A081231 * A121715 A121714 A064611
KEYWORD
sign
AUTHOR
Paul D. Hanna, Sep 14 2013
STATUS
approved