OFFSET
0,4
COMMENTS
Does this sequence consist entirely of integers?
The g.f. G(x) of A185072 satisfies [x^(n+1)] G(x)^(n^2+1) = 0 for n>0.
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..200
EXAMPLE
G.f.: A(x) = 1 + x - x^2 + 2*x^3 - 8*x^4 + 10*x^5 - 372*x^6 - 6014*x^7 +...
The g.f. of A185072 begins:
G(x) = 1 + x - 2*x^2 + 6*x^3 - 28*x^4 + 70*x^5 - 1446*x^6 - 22302*x^7 +...
G(x)^2 = 1 + 2*x - 3*x^2 + 8*x^3 - 40*x^4 + 60*x^5 - 2604*x^6 - 48112*x^7 +...
where the coefficient of x^n in G(x)^2 appears to be divisible by (n+1) for n>=0.
PROG
(PARI) {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=-Vec((1/x*serreverse(x/Ser(A)^(#A-1)))^(1/(#A-1)))[#A]); Vec(Ser(A)^2)[n+1]/(n+1)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Sep 14 2013
STATUS
approved