OFFSET
1,1
COMMENTS
No term is the product of two other terms.
Squares of terms and pairwise products of distinct terms form a subsequence of A028260.
Numbers n such that A162642(n) = 1. - Jason Kimberley, Oct 10 2016
Numbers k such that A007913(k) is a prime number. - Amiram Eldar, Jul 27 2020
LINKS
Chris Boyd, Table of n, a(n) for n = 1..10000
Eckford Cohen, Arithmetical notes, IX. On the set of integers representable as a product of a prime and square, Acta Arithmetica, Vol. 7 (1962), pp. 417-420.
FORMULA
The number of terms not exceeding x is (Pi^2/6) * x/log(x) + O(x/(log(x))^2) (Cohen, 1962). - Amiram Eldar, Jul 27 2020
MATHEMATICA
With[{nn=70}, Take[Union[Flatten[Table[p*m^2, {p, Prime[Range[nn]]}, {m, nn}]]], nn]] (* Harvey P. Dale, Dec 02 2014 *)
PROG
(PARI) test(n)=isprime(core(n))
for(n=1, 200, if(test(n), print1(n", ")))
(Python)
from math import isqrt
from sympy import primepi
def A229125(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum(primepi(x//y**2) for y in range(1, isqrt(x)+1))
return bisection(f, n, n) # Chai Wah Wu, Jan 30 2025
CROSSREFS
Subsequence of A026424.
KEYWORD
nonn,changed
AUTHOR
Chris Boyd, Sep 14 2013
STATUS
approved