login
A162642
Number of odd exponents in the canonical prime factorization of n.
32
0, 1, 1, 0, 1, 2, 1, 1, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 2, 0, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 0, 1, 2, 2, 2, 1, 3, 1, 1, 1, 2, 1, 1, 0, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 0, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 0, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 1, 0, 1, 3, 1, 2, 3
OFFSET
1,6
COMMENTS
a(n) is also known as the squarefree rank of n. - Jason Kimberley, Jul 08 2017
The number of primes that are infinitary divisors of n. - Amiram Eldar, Oct 01 2023
LINKS
R. B. Eggleton, J. S. Kimberley and J. A. MacDougall, Square-free rank of integers, Journal of Combinatorial Mathematics and Combinatorial Computing, Vol. 106 (2018).
FORMULA
a(n) = A001221(n) - A162641(n).
a(n) = A001221(A007913(n)). - Jason Kimberley, Jan 06 2016
a(A000290(n)) = 0, n > 0. - Michel Marcus, Jan 08 2016
G.f.: Sum_{i>=1} Sum_{j>=1} (-1)^j x^(prime(i)^j)/(x^(prime(i)^j) - 1). - Robert Israel, Jan 15 2016
From Antti Karttunen, Nov 28 2017: (Start)
Additive with a(p^e) = A000035(e).
a(n) = A056169(n) + A295662(n).
A056169(n) <= a(n) <= A056169(n) + A295659(n).
a(n) <= A295664(n).
(End)
Sum_{k=1..n} a(k) = n * log(log(n)) + c * n + O(n/log(n)), where c = gamma + Sum_{p prime} (log(1-1/p) + 1/(p+1)) = A077761 - A179119 = -0.0687327134... and gamma is Euler's constant (A001620). - Amiram Eldar, Dec 25 2021
MAPLE
A162642 := proc(n) add ( op(2, f) mod 2 , f=ifactors(n)[2]) ; end proc: # R. J. Mathar, Mar 30 2011
MATHEMATICA
{0}~Join~Table[Count[Last /@ FactorInteger@ n, e_ /; OddQ@ e], {n, 2, 105}] (* Michael De Vlieger, Jan 06 2016 *)
PROG
(Magma) A162642:=func<n|#{pe:pe in Factorisation(n)|IsOdd(pe[2])}>;
[A162642(n):n in[1..105]]; // Jason Kimberley, Dec 30 2015
(PARI) a(n) = {my(f = factor(n)); sum(k=1, #f~, f[k, 2] % 2); } \\ Michel Marcus, Jan 08 2016
(Scheme, with memoization-macro definec) (definec (A162642 n) (if (= 1 n) 0 (+ (A000035 (A067029 n)) (A162642 (A028234 n))))) ;; Antti Karttunen, Nov 28 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Jul 08 2009
STATUS
approved