login
A366246
The number of infinitary divisors of n that are "Fermi-Dirac primes" (A050376) and terms of A366242.
5
0, 1, 1, 0, 1, 2, 1, 1, 0, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 0, 2, 1, 1, 1, 3, 1, 2, 2, 2, 2, 0, 1, 2, 2, 2, 1, 3, 1, 1, 1, 2, 1, 2, 0, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 1, 2, 2, 2, 2
OFFSET
1,6
LINKS
FORMULA
Additive with a(p^e) = A139351(e).
a(n) = A064547(n) - A366247(n).
a(n) = A064547(A366244(n)).
a(n) >= 0, with equality if and only if n is in A366243.
a(n) <= A064547(n), with equality if and only if n is in A366242.
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} f(1/p) = -0.25705126777012995187..., where f(x) = - x + Sum_{k>=0} (x^(4^k)/(1+x^(4^k))).
MATHEMATICA
s[0] = 0; s[n_] := s[n] = s[Floor[n/4]] + If[OddQ[Mod[n, 4]], 1, 0]; f[p_, e_] := s[e]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) s(e) = if(e>3, s(e\4)) + e%2 \\ after Charles R Greathouse IV at A139351
a(n) = vecsum(apply(s, factor(n)[, 2]));
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Oct 05 2023
STATUS
approved