login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366242
Numbers that are products of "Fermi-Dirac primes" (A050376) that are powers of primes with exponents that are powers of 4.
11
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 26, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 48, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 96, 97
OFFSET
1,2
COMMENTS
A subsequence of A252895, and first differs from it at n = 172. A252895(172) = 256 = 2^(2^3) is not a term of this sequence.
Equivalently, numbers that are products of "Fermi-Dirac primes" that are powers of primes with exponents that are powers of 2 with even exponents.
Products of distinct numbers of the form p^(2^(2*k)), where p is prime and k >= 0.
Numbers whose prime factorization has exponents that are positive terms of the Moser-de Bruijn sequence (A000695).
Every integer k has a unique representation as a product of 2 numbers: one is in this sequence and the other is in A366243: k = A366244(k) * A366245(k).
The asymptotic density of this sequence is 1/c = 0.65531174251481086750..., where c is given in the formula section.
LINKS
FORMULA
a(n) ~ c * n, where c = Product_{k>=0} zeta(2^(2*k+1))/zeta(2^(2*k+2)) = 1.52599127273749217982... .
MATHEMATICA
mdQ[n_] := AllTrue[IntegerDigits[n, 4], # < 2 &]; Select[Range[100], AllTrue[FactorInteger[#][[;; , 2]], mdQ] &]
PROG
(PARI) ismd(n) = {my(d = digits(n, 4)); for(i = 1, #d, if(d[i] > 1, return(0))); 1; }
is(n) = {my(e = factor(n)[ , 2]); for(i = 1, #e, if(!ismd(e[i]), return(0))); 1; }
CROSSREFS
Subsequence of A252895.
Sequence in context: A059266 A336222 A252895 * A336224 A274034 A197680
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Oct 05 2023
STATUS
approved