OFFSET
1,2
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
Multiplicative with a(p^e) = p^A063694(e).
a(n) = n / A366245(n).
a(n) >= 1, with equality if and only if n is a term of A366243.
a(n) <= n, with equality if and only if n is a term of A366242.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1-1/p)*(Sum_{k>=1} p^(A063694(k)-2*k)) = 0.35319488024808595542... .
From Peter Munn, Jan 09 2025: (Start)
a(n) = Product_{k >= 0} A352780(n, 2k).
Also defined by:
- a(n^4) = (a(n))^4;
Other identities:
a(n) = sqrt(A366245(n^2)).
(End)
MATHEMATICA
f[p_, e_] := p^BitAnd[e, Sum[2^k, {k, 0, Floor@ Log2[e], 2}]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) s(e) = sum(k = 0, e, (-2)^k*floor(e/2^k));
a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^s(f[i, 2])); }
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Oct 05 2023
STATUS
approved