login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366244
The largest infinitary divisor of n that is a term of A366242.
6
1, 2, 3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 16, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7, 29, 30, 31, 32, 33, 34, 35, 1, 37, 38, 39, 10, 41, 42, 43, 11, 5, 46, 47, 48, 1, 2, 51, 13, 53, 6, 55, 14, 57, 58, 59, 15, 61, 62, 7, 16, 65, 66, 67, 17, 69, 70, 71
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = p^A063694(e).
a(n) = n / A366245(n).
a(n) >= 1, with equality if and only if n is a term of A366243.
a(n) <= n, with equality if and only if n is a term of A366242.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1-1/p)*(Sum_{k>=1} p^(A063694(k)-2*k)) = 0.35319488024808595542... .
MATHEMATICA
f[p_, e_] := p^BitAnd[e, Sum[2^k, {k, 0, Floor@ Log2[e], 2}]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) s(e) = sum(k = 0, e, (-2)^k*floor(e/2^k));
a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^s(f[i, 2])); }
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Oct 05 2023
STATUS
approved