The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A083346 Denominator of r(n) = Sum(e/p: n=Product(p^e)). 12
 1, 2, 3, 1, 5, 6, 7, 2, 3, 10, 11, 3, 13, 14, 15, 1, 17, 6, 19, 5, 21, 22, 23, 6, 5, 26, 1, 7, 29, 30, 31, 2, 33, 34, 35, 3, 37, 38, 39, 10, 41, 42, 43, 11, 15, 46, 47, 3, 7, 10, 51, 13, 53, 2, 55, 14, 57, 58, 59, 15, 61, 62, 21, 1, 65, 66, 67, 17, 69, 70, 71, 6, 73, 74, 15, 19, 77, 78 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Multiplicative with a(p^e) = 1 iff p|e, p otherwise. For f(n) = A083345(n)/A083346(n), f(p^i*q^j*...) = f(p^i)+f(q^j)+ ... The denominator of each term is 1 or the prime, thus the denominator of the sum is the product of the denominators of the components. - Christian G. Bower, May 16 2005 n divided by the greatest common divisor of n and its arithmetic derivative, i.e., a(n) = n/gcd(n,n') = A000027(n)/A085731(n). - Giorgio Balzarotti, Apr 14 2011 LINKS Antti Karttunen, Table of n, a(n) for n = 1..65537 FORMULA a(n) = denominator(A175251(n)/n). - Michel Marcus, Sep 12 2021 EXAMPLE n=12 = 2*2*3 = 2^2 * 3^1 -> r(12) = 2/2 + 1/3 = (6+2)/6, therefore a(12)=3, A083345(12)=4; n=18 = 2*3*3 = 2^1 * 3^2 -> r(18) = 1/2 + 2/3 = (3+4)/6, therefore a(18)=6, A083345(18)=7. MATHEMATICA a[n_] := Product[Module[{p, e}, {p, e} = pe; If[Divisible[e, p], 1, p]], {pe, FactorInteger[n]}]; Array[a, 100] (* Jean-François Alcover, Oct 06 2021 *) PROG (PARI) A083346(n) = { my(f=factor(n)); denominator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1]))); }; \\ Antti Karttunen, Mar 01 2018 CROSSREFS Cf. A083345 (numerator). Cf. A072873, A083347, A083348, A175251. Sequence in context: A326049 A072400 A007913 * A319652 A327938 A065883 Adjacent sequences:  A083343 A083344 A083345 * A083347 A083348 A083349 KEYWORD nonn,mult AUTHOR Reinhard Zumkeller, Apr 25 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 03:58 EST 2022. Contains 350473 sequences. (Running on oeis4.)