login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065883
Remove factors of 4 from n (i.e., write n in base 4, drop final zeros, then rewrite in decimal).
15
1, 2, 3, 1, 5, 6, 7, 2, 9, 10, 11, 3, 13, 14, 15, 1, 17, 18, 19, 5, 21, 22, 23, 6, 25, 26, 27, 7, 29, 30, 31, 2, 33, 34, 35, 9, 37, 38, 39, 10, 41, 42, 43, 11, 45, 46, 47, 3, 49, 50, 51, 13, 53, 54, 55, 14, 57, 58, 59, 15, 61, 62, 63, 1, 65, 66, 67, 17, 69, 70, 71, 18, 73, 74, 75
OFFSET
1,2
LINKS
Indranil Ghosh, Table of n, a(n) for n = 1..20000 (First 1000 terms from Harry J. Smith)
FORMULA
If n mod 4 = 0 then a(n) = a(n/4), otherwise a(n) = n.
Multiplicative with a(p^e) = 2^(e (mod 2)) if p = 2 and a(p^e) = p^e if p is an odd prime.
a(n) = n/4^A235127(n).
a(n) = A214392(n) if n mod 16 != 0. - Peter Kagey, Sep 02 2015
From Robert Israel, Dec 08 2015: (Start)
G.f.: x/(1-x)^2 - 3 Sum_{j>=1} x^(4^j)/(1-x^(4^j))^2.
G.f. satisfies G(x) = G(x^4) + x/(1-x)^2 - 4 x^4/(1-x^4)^2. (End)
Sum_{k=1..n} a(k) ~ (2/5) * n^2. - Amiram Eldar, Nov 20 2022
Dirichlet g.f.: zeta(s-1)*(4^s-4)/(4^s-1). - Amiram Eldar, Jan 04 2023
EXAMPLE
a(7)=7, a(14)=14, a(28)=a(4*7)=7, a(56)=a(4*14)=14, a(112)=a(4^2*7)=7.
MAPLE
A065883:= n -> n/4^floor(padic:-ordp(n, 2)/2):
map(A065883, [$1..1000]); # Robert Israel, Dec 08 2015
MATHEMATICA
If[Divisible[#, 4], #/4^IntegerExponent[#, 4], #]&/@Range[80] (* Harvey P. Dale, Aug 31 2013 *)
PROG
(PARI) a(n)=n/4^valuation(n, 4); \\ Joerg Arndt, Dec 09 2015
(Python)
def A065883(n): return n>>((~n&n-1).bit_length()&-2) # Chai Wah Wu, Jul 09 2022
CROSSREFS
Cf. A214392, A235127, A350091 (drop final 2's).
Remove other factors: A000265, A038502, A132739, A244414, A242603, A004151.
Sequence in context: A083346 A319652 A327938 * A214392 A071975 A350389
KEYWORD
base,easy,nonn,mult
AUTHOR
Henry Bottomley, Nov 26 2001
STATUS
approved