login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Remove factors of 4 from n (i.e., write n in base 4, drop final zeros, then rewrite in decimal).
15

%I #68 Dec 08 2024 23:51:16

%S 1,2,3,1,5,6,7,2,9,10,11,3,13,14,15,1,17,18,19,5,21,22,23,6,25,26,27,

%T 7,29,30,31,2,33,34,35,9,37,38,39,10,41,42,43,11,45,46,47,3,49,50,51,

%U 13,53,54,55,14,57,58,59,15,61,62,63,1,65,66,67,17,69,70,71,18,73,74,75

%N Remove factors of 4 from n (i.e., write n in base 4, drop final zeros, then rewrite in decimal).

%H Indranil Ghosh, <a href="/A065883/b065883.txt">Table of n, a(n) for n = 1..20000</a> (First 1000 terms from Harry J. Smith)

%F If n mod 4 = 0 then a(n) = a(n/4), otherwise a(n) = n.

%F Multiplicative with a(p^e) = 2^(e (mod 2)) if p = 2 and a(p^e) = p^e if p is an odd prime.

%F a(n) = n/4^A235127(n).

%F a(n) = A214392(n) if n mod 16 != 0. - _Peter Kagey_, Sep 02 2015

%F From _Robert Israel_, Dec 08 2015: (Start)

%F G.f.: x/(1-x)^2 - 3 Sum_{j>=1} x^(4^j)/(1-x^(4^j))^2.

%F G.f. satisfies G(x) = G(x^4) + x/(1-x)^2 - 4 x^4/(1-x^4)^2. (End)

%F Sum_{k=1..n} a(k) ~ (2/5) * n^2. - _Amiram Eldar_, Nov 20 2022

%F Dirichlet g.f.: zeta(s-1)*(4^s-4)/(4^s-1). - _Amiram Eldar_, Jan 04 2023

%e a(7)=7, a(14)=14, a(28)=a(4*7)=7, a(56)=a(4*14)=14, a(112)=a(4^2*7)=7.

%p A065883:= n -> n/4^floor(padic:-ordp(n,2)/2):

%p map(A065883, [$1..1000]); # _Robert Israel_, Dec 08 2015

%t If[Divisible[#,4],#/4^IntegerExponent[#,4],#]&/@Range[80] (* _Harvey P. Dale_, Aug 31 2013 *)

%o (PARI) a(n)=n/4^valuation(n,4); \\ _Joerg Arndt_, Dec 09 2015

%o (Python)

%o def A065883(n): return n>>((~n&n-1).bit_length()&-2) # _Chai Wah Wu_, Jul 09 2022

%Y Cf. A214392, A235127, A350091 (drop final 2's).

%Y Remove other factors: A000265, A038502, A132739, A244414, A242603, A004151.

%K base,easy,nonn,mult

%O 1,2

%A _Henry Bottomley_, Nov 26 2001