The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A139146 Interpolation one half polynomials based on Chebyshev T(x.n) polynomial coefficients(A053120 ): even-> 2*T(x,n); odd->T(x,n)+T(x,n+1). 0
 2, 1, 1, 0, 2, -1, 1, 2, -2, 0, 4, -1, -3, 2, 4, 0, -6, 0, 8, 1, -3, -8, 4, 8, 2, 0, -16, 0, 16, 1, 5, -8, -20, 8, 16, 0, 10, 0, -40, 0, 32 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Row sums are all 2. The rationale behind this interpolation is that Bessel functions have 1/2 values, so what about other orthogonal polynomials? The integration shows that they are "mostly" orthogonal when three away from the diagonal. TableForm[Table[Integrate[p[x, m]*p[x, n]/Sqrt[1 - x^2], {x, -1, 1}], {n, 0, 10}, {m, 0, 10}]] These polynomials would also be related to two dimensional Chladni-Chebyshev type standing waves as: Chladni[x,y,n,m]=ChebyshevT[n, x] + ChebyshevT[m, y]. LINKS FORMULA even->p(x.m)= 2*T(x,n); odd->p(x,m)=T(x,n)+T(x,n+1); out_n,m=Coefficients(p(x,m). EXAMPLE {2}, {1, 1}, {0, 2}, {-1, 1, 2}, {-2, 0, 4}, {-1, -3, 2, 4}, {0, -6, 0, 8}, {1, -3, -8, 4,8}, {2, 0, -16, 0, 16}, {1, 5, -8, -20, 8, 16}, {0, 10, 0, -40, 0, 32} MATHEMATICA Clear[p, x] p[x, 0] = 2*ChebyshevT[0, x]; p[x, 1] = ChebyshevT[0, x] + ChebyshevT[1, x]; p[x, 2] = 2*ChebyshevT[1, x]; p[x_, m_] := p[x, m] = If[Mod[m, 2] == 0, 2*ChebyshevT[Floor[m/2], x], ChebyshevT[Floor[m/2], x] + ChebyshevT[Floor[m/2 + 1], x]]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a] Table[Apply[Plus, CoefficientList[p[x, n], x]], {n, 0, 10}] CROSSREFS Cf. A053120. Sequence in context: A255315 A125072 A162642 * A340489 A277487 A144032 Adjacent sequences:  A139143 A139144 A139145 * A139147 A139148 A139149 KEYWORD uned,tabf,sign AUTHOR Roger L. Bagula, Jun 05 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 8 13:26 EDT 2021. Contains 343666 sequences. (Running on oeis4.)