login
A139351
Let the binary expansion of n be n = Sum_{k} 2^{r_k}, let e(n) be the number of r_k's that are even, o(n) the number that are odd; sequence gives e(n).
18
0, 1, 0, 1, 1, 2, 1, 2, 0, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 1, 2, 2, 3, 2, 3, 0, 1, 0, 1, 1, 2, 1, 2, 0, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 1, 2, 2, 3, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 2, 3, 3, 4, 3, 4, 1, 2, 1
OFFSET
0,6
COMMENTS
e(n)+o(n) = A000120(n), the binary weight of n.
a(n) is also number of 1's and 3's in 4-ary representation of n. - Frank Ruskey, May 02 2009
LINKS
Franklin T. Adams-Watters and Frank Ruskey, Generating Functions for the Digital Sum and Other Digit Counting Sequences, JIS 12 (2009), Article 09.5.6.
FORMULA
a(n) + A139352(n) = A000120(n).
G.f.: (1/(1-z))*Sum_{m>=0} (z^(4^m)/(1+z^(4^m))). - Frank Ruskey, May 03 2009
Recurrence relation: a(0)=0, a(4m) = a(4m+2) = a(m), a(4m+1) = a(4m+3) = 1+a(m). - Frank Ruskey, May 11 2009
a(n) = Sum_{k} A030308(n,k)*A059841(k). - Philippe Deléham, Oct 14 2011
EXAMPLE
For n = 43 = 2^0 + 2^1 + 2^3 + 2^5, e(43)=1, o(43)=3.
MAPLE
A139351 := proc(n)
local a, bdgs, r;
a := 0 ;
bdgs := convert(n, base, 2) ;
for r from 1 to nops(bdgs) by 2 do
if op(r, bdgs) = 1 then
a := a+1 ;
end if;
end do:
a;
end proc: # R. J. Mathar, Jul 21 2016
MATHEMATICA
terms = 99; s = (1/(1-z))*Sum[z^(4^m)/(1+z^(4^m)), {m, 0, Log[4, terms] // Ceiling}] + O[z]^terms; CoefficientList[s, z] (* Jean-François Alcover, Jul 21 2017 *)
a[0] = 0; a[n_] := a[n] = a[Floor[n/4]] + If[OddQ[Mod[n, 4]], 1, 0]; Array[a, 100, 0] (* Amiram Eldar, Jul 18 2023 *)
PROG
(Fortran) See Sloane link.
(Haskell)
import Data.List (unfoldr)
a139351 = sum . map (`mod` 2) .
unfoldr (\x -> if x == 0 then Nothing else Just (x, x `div` 4)
-- Reinhard Zumkeller, Apr 22 2011
(PARI) a(n)=if(n>3, a(n\4))+n%2 \\ Charles R Greathouse IV, Apr 21 2016
KEYWORD
nonn,base,easy
AUTHOR
EXTENSIONS
Typo in example fixed by Reinhard Zumkeller, Apr 22 2011
STATUS
approved