login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

The number of infinitary divisors of n that are "Fermi-Dirac primes" (A050376) and terms of A366242.
5

%I #9 Oct 06 2023 10:56:47

%S 0,1,1,0,1,2,1,1,0,2,1,1,1,2,2,1,1,1,1,1,2,2,1,2,0,2,1,1,1,3,1,2,2,2,

%T 2,0,1,2,2,2,1,3,1,1,1,2,1,2,0,1,2,1,1,2,2,2,2,2,1,2,1,2,1,1,2,3,1,1,

%U 2,3,1,1,1,2,1,1,2,3,1,2,1,2,1,2,2,2,2

%N The number of infinitary divisors of n that are "Fermi-Dirac primes" (A050376) and terms of A366242.

%H Amiram Eldar, <a href="/A366246/b366246.txt">Table of n, a(n) for n = 1..10000</a>

%F Additive with a(p^e) = A139351(e).

%F a(n) = A064547(n) - A366247(n).

%F a(n) = A064547(A366244(n)).

%F a(n) >= 0, with equality if and only if n is in A366243.

%F a(n) <= A064547(n), with equality if and only if n is in A366242.

%F Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} f(1/p) = -0.25705126777012995187..., where f(x) = - x + Sum_{k>=0} (x^(4^k)/(1+x^(4^k))).

%t s[0] = 0; s[n_] := s[n] = s[Floor[n/4]] + If[OddQ[Mod[n, 4]], 1, 0]; f[p_, e_] := s[e]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]

%o (PARI) s(e) = if(e>3, s(e\4)) + e%2 \\ after _Charles R Greathouse IV_ at A139351

%o a(n) = vecsum(apply(s, factor(n)[, 2]));

%Y Cf. A050376, A064547, A077761, A139351, A366242, A366243, A366247.

%K nonn,easy

%O 1,6

%A _Amiram Eldar_, Oct 05 2023