login
A295659
Number of exponents larger than 2 in the prime factorization of n.
13
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1,216
FORMULA
Additive with a(p^e) = 1 if e>2, 0 otherwise.
a(n) = 0 iff A212793(n) = 1.
a(n) = A001221(A053150(n)).
a(n) = A056170(A003557(n)).
a(n) >= A295662(n) = A162642(n) - A056169(n).
a(n) = A295883(n) + A295884(n).
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = Sum_{p prime} 1/p^3 = 0.174762... (A085541). - Amiram Eldar, Nov 01 2020
EXAMPLE
For n = 120 = 2^3 * 3^1 * 5^1 there is only one exponent larger than 2, thus a(120) = 1.
For n = 216 = 2^3 * 3^3 there are two exponents larger than 2, thus a(216) = 2.
MATHEMATICA
Array[Count[FactorInteger[#][[All, -1]], _?(# > 2 &)] &, 105] (* Michael De Vlieger, Nov 28 2017 *)
PROG
(Scheme, with memoization-macro definec) (definec (A295659 n) (if (= 1 n) 0 (+ (if (> (A067029 n) 2) 1 0) (A295659 (A028234 n)))))
(PARI) a(n) = { my(v = factor(n)[, 2], i=0); for(x=1, length(v), if(v[x]>2, i++)); i; } \\ Iain Fox, Nov 29 2017
CROSSREFS
Cf. A004709 (positions of zeros), A046099 (of nonzeros), A212793.
Sequence in context: A044938 A072401 A064873 * A188436 A037823 A293162
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 28 2017
STATUS
approved