OFFSET
1,8
COMMENTS
This can be thought as a "lower 3rd root" of a positive integer. Upper k-th roots were studied by Broughan (2002, 2003, 2006). The sequence of "upper 3rd root" of positive integers is given by A019555. - Petros Hadjicostas, Sep 15 2019
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
Henry Bottomley, Some Smarandache-type multiplicative sequences.
Kevin A. Broughan, Restricted divisor sums, Acta Arithmetica, 101(2) (2002), 105-114.
Kevin A. Broughan, Relationship between the integer conductor and k-th root functions, Int. J. Pure Appl. Math. 5(3) (2003), 253-275.
Kevin A. Broughan, Relaxations of the ABC Conjecture using integer k'th roots, New Zealand J. Math. 35(2) (2006), 121-136.
Vaclav Kotesovec, Graph - the asymptotic ratio.
FORMULA
Multiplicative with a(p^e) = p^[e/3]. - Mitch Harris, Apr 19 2005
Dirichlet g.f.: zeta(3s-1)*zeta(s)/zeta(3s). - R. J. Mathar, Apr 09 2011
Sum_{k=1..n} a(k) ~ Pi^2 * n / (6*zeta(3)) + 3*zeta(2/3) * n^(2/3) / Pi^2. - Vaclav Kotesovec, Jan 31 2019
a(n) = Sum_{d^3|n} phi(d). - Ridouane Oudra, Dec 30 2020
G.f.: Sum_{k>=1} phi(k) * x^(k^3) / (1 - x^(k^3)). - Ilya Gutkovskiy, Aug 20 2021
MATHEMATICA
f[list_] := list[[1]]^Quotient[list[[2]], 3]; Table[Apply[Times, Map[f, FactorInteger[n]]], {n, 1, 81}] (* Geoffrey Critzer, Jan 21 2015 *)
Table[SelectFirst[Reverse@ Divisors@ n, IntegerQ[#^(1/3)] &]^(1/3), {n, 105}] (* Michael De Vlieger, Jul 28 2017 *)
f[p_, e_] := p^Floor[e/3]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
PROG
(PARI) A053150(n) = { my(f = factor(n), m = 1); for (k=1, #f~, m *= (f[k, 1]^(f[k, 2]\3)); ); m; } \\ Antti Karttunen, Jul 28 2017
(PARI) a(n) = my(f = factor(n)); for (k=1, #f~, f[k, 2] = f[k, 2]\3); factorback(f); \\ Michel Marcus, Jul 28 2017
(Python 3.8+)
from math import prod
from sympy import factorint
def A053150(n): return prod(p**(q//3) for p, q in factorint(n).items()) # Chai Wah Wu, Aug 18 2021
CROSSREFS
KEYWORD
easy,nonn,mult
AUTHOR
Henry Bottomley, Feb 28 2000
EXTENSIONS
More terms from Antti Karttunen, Jul 28 2017
STATUS
approved