login
A015051
Let m = A013929(n); then a(n) = smallest k such that m divides k^4.
6
2, 2, 3, 6, 2, 6, 10, 6, 5, 3, 14, 4, 6, 10, 22, 15, 6, 7, 10, 26, 6, 14, 30, 21, 4, 34, 6, 15, 38, 10, 3, 42, 22, 30, 46, 12, 14, 33, 10, 26, 6, 14, 58, 39, 30, 11, 62, 5, 42, 4, 66, 15, 34, 70, 6, 21, 74, 30, 38, 51, 78, 20, 6, 82, 42, 13, 57, 86
OFFSET
1,1
LINKS
Henry Ibstedt, Surfing on the Ocean of Numbers, Erhus Univ. Press, Vail, 1997.
FORMULA
a(n) = A053166(A013929(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(2) * (zeta(2) * zeta(7) * Product_{p prime} (1-1/p^2+1/p^3-1/p^4+1/p^5-1/p^6) - 1)/(zeta(2)-1)^2 = 0.635465442379... . - Amiram Eldar, Jan 06 2024
MATHEMATICA
f[p_, e_] := p^Ceiling[e/4]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; s /@ Select[Range[200], !SquareFreeQ[#] &] (* Amiram Eldar, Feb 10 2021 *)
PROG
(PARI) lista(kmax) = {my(f); for(k = 2, kmax, f = factor(k); if(!issquarefree(f), print1(prod(i = 1, #f~, f[i, 1]^ceil(f[i, 2]/4)), ", "))); } \\ Amiram Eldar, Jan 06 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
R. Muller
EXTENSIONS
Description corrected by Diego Torres (torresvillarroel(AT)hotmail.com), Jun 23 2002
Offset corrected by Amiram Eldar, Feb 10 2021
STATUS
approved