OFFSET
1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (in Russian), Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (English translation), Discrete Mathematics and Applications, 9, (1999), no. 6.
Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
FORMULA
a(n) = (1/2!)*(3^n-2^n-1).
From Colin Barker, Jun 26 2012: (Start)
a(n) = 6*a(n-1)-11*a(n-2)+6*a(n-3).
G.f.: x^2*(2-3*x)/((1-x)*(1-2*x)*(1-3*x)). (End)
a(n) = floor((3^n-2^n)/2). - Wesley Ivan Hurt, Mar 16 2015
MAPLE
MATHEMATICA
CoefficientList[Series[x (2 - 3 x) / ((1 - x) (1 - 2 x) (1 - 3 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 17 2015 *)
LinearRecurrence[{6, -11, 6}, {0, 2, 9}, 50] (* G. C. Greubel, Oct 06 2017 *)
PROG
(Sage) [(3^n - 1)/2-2^(n-1) for n in range(1, 27)] # Zerinvary Lajos, Jun 05 2009
(Magma) [Floor((3^n-2^n)/2): n in [1..30]]; // Vincenzo Librandi, Mar 17 2015
(PARI) for(n=1, 50, print1((1/2)*(3^n -2^n -1), ", ")) \\ G. C. Greubel, Oct 06 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Feb 28 2000
EXTENSIONS
More terms from James A. Sellers, Mar 01 2000
a(27)-a(28) from Vincenzo Librandi, Mar 17 2015
STATUS
approved