login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053152
Number of 2-element intersecting families whose union is an n-element set.
6
0, 2, 9, 32, 105, 332, 1029, 3152, 9585, 29012, 87549, 263672, 793065, 2383292, 7158069, 21490592, 64504545, 193579172, 580868589, 1742867912, 5229128025, 15688432652, 47067395109, 141206379632, 423627527505, 1270899359732, 3812731633629, 11438262009752
OFFSET
1,2
LINKS
V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (in Russian), Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (English translation), Discrete Mathematics and Applications, 9, (1999), no. 6.
FORMULA
a(n) = (1/2!)*(3^n-2^n-1).
From Colin Barker, Jun 26 2012: (Start)
a(n) = 6*a(n-1)-11*a(n-2)+6*a(n-3).
G.f.: x^2*(2-3*x)/((1-x)*(1-2*x)*(1-3*x)). (End)
a(n) = floor((3^n-2^n)/2). - Wesley Ivan Hurt, Mar 16 2015
MAPLE
A053152:=n->floor((3^n-2^n)/2): seq(A053152(n), n=1..30); # Wesley Ivan Hurt, Mar 19 2015
MATHEMATICA
CoefficientList[Series[x (2 - 3 x) / ((1 - x) (1 - 2 x) (1 - 3 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 17 2015 *)
LinearRecurrence[{6, -11, 6}, {0, 2, 9}, 50] (* G. C. Greubel, Oct 06 2017 *)
PROG
(Sage) [(3^n - 1)/2-2^(n-1) for n in range(1, 27)] # Zerinvary Lajos, Jun 05 2009
(Magma) [Floor((3^n-2^n)/2): n in [1..30]]; // Vincenzo Librandi, Mar 17 2015
(PARI) for(n=1, 50, print1((1/2)*(3^n -2^n -1), ", ")) \\ G. C. Greubel, Oct 06 2017
CROSSREFS
Cf. A036239, A064686 (first differences).
Sequence in context: A082114 A332870 A074084 * A077644 A292482 A053369
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Feb 28 2000
EXTENSIONS
More terms from James A. Sellers, Mar 01 2000
a(27)-a(28) from Vincenzo Librandi, Mar 17 2015
STATUS
approved