login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 2-element intersecting families whose union is an n-element set.
6

%I #38 Sep 08 2022 08:45:00

%S 0,2,9,32,105,332,1029,3152,9585,29012,87549,263672,793065,2383292,

%T 7158069,21490592,64504545,193579172,580868589,1742867912,5229128025,

%U 15688432652,47067395109,141206379632,423627527505,1270899359732,3812731633629,11438262009752

%N Number of 2-element intersecting families whose union is an n-element set.

%H G. C. Greubel, <a href="/A053152/b053152.txt">Table of n, a(n) for n = 1..1000</a>

%H V. Jovovic and G. Kilibarda, <a href="http://dx.doi.org/10.4213/dm398">On the number of Boolean functions in the Post classes F^{mu}_8</a>, (in Russian), Diskretnaya Matematika, 11 (1999), no. 4, 127-138.

%H V. Jovovic and G. Kilibarda, <a href="http://dx.doi.org/10.1515/dma.1999.9.6.593">On the number of Boolean functions in the Post classes F^{mu}_8</a>, (English translation), Discrete Mathematics and Applications, 9, (1999), no. 6.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-11,6).

%F a(n) = (1/2!)*(3^n-2^n-1).

%F From _Colin Barker_, Jun 26 2012: (Start)

%F a(n) = 6*a(n-1)-11*a(n-2)+6*a(n-3).

%F G.f.: x^2*(2-3*x)/((1-x)*(1-2*x)*(1-3*x)). (End)

%F a(n) = floor((3^n-2^n)/2). - _Wesley Ivan Hurt_, Mar 16 2015

%p A053152:=n->floor((3^n-2^n)/2): seq(A053152(n), n=1..30); # _Wesley Ivan Hurt_, Mar 19 2015

%t CoefficientList[Series[x (2 - 3 x) / ((1 - x) (1 - 2 x) (1 - 3 x)), {x, 0, 40}], x] (* _Vincenzo Librandi_, Mar 17 2015 *)

%t LinearRecurrence[{6,-11,6}, {0,2,9}, 50] (* _G. C. Greubel_, Oct 06 2017 *)

%o (Sage) [(3^n - 1)/2-2^(n-1) for n in range(1,27)] # _Zerinvary Lajos_, Jun 05 2009

%o (Magma) [Floor((3^n-2^n)/2): n in [1..30]]; // _Vincenzo Librandi_, Mar 17 2015

%o (PARI) for(n=1,50, print1((1/2)*(3^n -2^n -1), ", ")) \\ _G. C. Greubel_, Oct 06 2017

%Y Cf. A036239, A064686 (first differences).

%K easy,nonn

%O 1,2

%A _Vladeta Jovovic_, Goran Kilibarda, Feb 28 2000

%E More terms from _James A. Sellers_, Mar 01 2000

%E a(27)-a(28) from _Vincenzo Librandi_, Mar 17 2015