login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325988
Number of covering (or complete) factorizations of n.
7
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
OFFSET
1,8
COMMENTS
First differs from A072911 at a(64) = 5, A072911(64) = 4.
A covering factorization of n is an orderless factorization of n into factors > 1 such that every divisor of n is the product of some submultiset of the factors.
FORMULA
a(2^n) = A126796(n).
EXAMPLE
The a(64) = 5 factorizations:
(2*2*2*2*2*2)
(2*2*2*2*4)
(2*2*2*8)
(2*2*4*4)
(2*4*8)
The a(96) = 4 factorizations:
(2*2*2*2*2*3)
(2*2*2*3*4)
(2*2*3*8)
(2*3*4*4)
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], Union[Times@@@Subsets[#]]==Divisors[n]&]], {n, 100}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 30 2019
STATUS
approved