login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325987
Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k submultisets, k > 0.
1
1, 0, 1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 1, 1, 1, 1, 0, 1, 0, 2, 0, 3, 0, 1, 0, 1, 1, 3, 0, 1, 1, 2, 1, 1, 0, 1, 0, 3, 0, 3, 0, 4, 0, 1, 0, 3, 0, 1, 1, 3, 1, 3, 0, 3, 2, 1, 0, 4, 0, 1, 1, 1, 0, 1, 0, 5, 0, 3, 0, 5, 0, 3, 0, 6, 0, 1, 0, 3, 0, 2, 0, 1, 0, 1, 1, 4, 0
OFFSET
0,10
COMMENTS
The number of submultisets of a partition is the product of its multiplicities, each plus one.
LINKS
FORMULA
Sum_{k=1..A088881(n)} k * T(n,k) = A000712(n). - Alois P. Heinz, Aug 17 2019
EXAMPLE
Triangle begins:
1
0 1
0 1 1
0 1 0 2
0 1 1 1 1 1
0 1 0 2 0 3 0 1
0 1 1 3 0 1 1 2 1 1
0 1 0 3 0 3 0 4 0 1 0 3
0 1 1 3 1 3 0 3 2 1 0 4 0 1 1 1
0 1 0 5 0 3 0 5 0 3 0 6 0 1 0 3 0 2 0 1
0 1 1 4 0 5 0 7 2 1 1 4 0 1 2 5 0 3 0 2 1 0 0 2
Row n = 7 counts the following partitions (empty columns not shown):
(7) (43) (322) (421) (31111) (3211)
(52) (331) (2221) (22111)
(61) (511) (4111) (211111)
(1111111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Times@@(1+Length/@Split[#])==k&]], {n, 0, 10}, {k, 1, Max@@(Times@@(1+Length/@Split[#])&)/@IntegerPartitions[n]}]
CROSSREFS
Row lengths are A088881.
Row sums are A000041.
Diagonal n = k is A325830 interspersed with zeros.
Diagonal n + 1 = k is A325828.
Diagonal n - 1 = k is A325836.
Column k = 3 appears to be A137719.
Sequence in context: A114591 A161849 A056175 * A359324 A353421 A105241
KEYWORD
nonn,look,tabf
AUTHOR
Gus Wiseman, May 30 2019
STATUS
approved