OFFSET
0,5
COMMENTS
If n is odd, there are no integer partitions of n with exactly n submultisets, so this sequence gives only the even-indexed terms.
The number of submultisets of an integer partition is the product of its multiplicities, each plus one.
The Heinz numbers of these partitions are given by A325793.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..700 (first 101 terms from Andrew Howroyd)
FORMULA
a(p) = 1 for prime p. - Andrew Howroyd, Aug 16 2019
EXAMPLE
The 12 submultisets of the partition (7221) are (), (1), (2), (7), (21), (22), (71), (72), (221), (721), (722), (7221), so (7221) is counted under a(6).
The a(1) = 1 through a(8) = 21 partitions (A = 10, B = 11):
(2) (31) (411) (431) (61111) (4332) (8111111) (6532)
(521) (4431) (6541)
(5111) (5322) (7432)
(5331) (7531)
(6411) (7621)
(7221) (8431)
(7311) (8521)
(8211) (9421)
(33222) (A321)
(711111) (44431)
(53332)
(63331)
(64222)
(73222)
(76111)
(85111)
(92221)
(94111)
(A3111)
(B2111)
(91111111)
MAPLE
b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
`if`(n=p-1, 1, 0), add(`if`(irem(p, j+1, 'r')=0,
(w-> b(w, min(w, i-1), r))(n-i*j), 0), j=0..n/i))
end:
a:= n-> `if`(isprime(n), 1, b(2*n$3)):
seq(a(n), n=0..60); # Alois P. Heinz, Aug 16 2019
MATHEMATICA
Table[Length[Select[IntegerPartitions[2*n], Times@@(1+Length/@Split[#])==2*n&]], {n, 0, 30}]
(* Second program: *)
b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1,
If[n == p - 1, 1, 0], Sum[If[Mod[p, j + 1] == 0, r = p/(j + 1);
Function[w, b[w, Min[w, i - 1], r]][n - i*j], 0], {j, 0, n/i}]];
a[n_] := If[PrimeQ[n], 1, b[2n, 2n, 2n]];
a /@ Range[0, 60] (* Jean-François Alcover, May 12 2021, after Alois P. Heinz *)
PROG
(PARI) a(n)={if(n<1, 0, my(v=vector(2*n+1, k, vector(2*n))); v[1][1]=1; for(k=1, 2*n, forstep(j=#v, k, -1, for(m=1, (j-1)\k, for(i=1, 2*n\(m+1), v[j][i*(m+1)] += v[j-m*k][i])))); v[#v][2*n])} \\ Andrew Howroyd, Aug 16 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 25 2019
EXTENSIONS
Terms a(31) and beyond from Andrew Howroyd, Aug 16 2019
STATUS
approved